ISSN 1808-6136

PRODUÇÃO DE BLOQUETES EM CONCRETO VERDE COM ADIÇÃO DE PALHA DE CAFÉ

DIONE DA COSTA OLIVEIRA¹, RAFAEL ELER DE SOUZA².

¹Acadêmico do Curso de Engenharia Civil pela Faculdade Vértice (Univértix), Técnico em Edificações Pela Escola Técnica Vértice (Univértix), Bolsista de Iniciação Científica da Fapemig.

RESUMO

O estado de Minas Gerais é responsável por grande parte da produção cafeeira do país. A constatação da necessidade de encontrar tecnologias sustentáveis para lidar com a quantidade de resíduos gerados por essa demanda de café na região faz surgir esta pesquisa. O objetivo do estudo foi o desenvolvimento de bloquetes por meio de um concreto verde com a adição de cinzas da casca de café separada de qualquer matéria orgânica e em substituição de parte do cimento. Foram determinados os traços de concreto em que parte do cimento foi substituída pelas cinzas da palha de café. Para tanto, foi feita uma análise estatística, na qual foi necessário um planejamento fatorial de experimentos do tipo 2^k, sendo k o número de fatores, com dois níveis para cada fator. Os corpos-de-prova foram moldados com traço de 1:1 (areia, pó de brita) com substituição de 0%, 12,5%, 25%, 37,5% e 50% do volume do cimento pelas cinzas da casca de café.

Palavras-chave: Bloquetes; Cinzas; Concreto verde; Palha de Café.

PRODUCTION OF BLOCKS IN GREEN CONCRETE WITH ADDITION OF COFFEE STRAW

ABSTRACT

The state of Minas Gerais is responsible for much of the country's coffee production. The necessity of find sustainable technologies to deal with the amount of waste generated by the demand for coffee in the region comes from this research. The objective of the study was the development of bloquetes from green concrete with the addition of ash from the coffee husk separated from any organic matter and replacing part of the cement. The traces of concrete in which part of the cement was replaced in the ash of the coffee straw were determined. A statistical analysis was carried out, in which factorial planning of type 2k experiments was necessary, where k is the number of factors, with two levels for each factor. The specimens were cast with 1: 1 trace (Sand, Crushed Powder) with 0%, 12.5%, 25%, 37.5% and 50% replacement of the cement volume by the ashes of the shell of coffee.

Keywords: Hunger; Bloquetes; Ashes; Green concrete; Coffee Straw.

²Mestre em Engenharia dos Materiais pela Rede Temática em Engenharia de Materiais (REDEMAT), Graduado em designer de produtos pela Universidade do Estado de Minas Gerais (UEMG).

1 INTRODUÇÃO

O SINDICAFÉ-MG (2004) afirma que o maior Parque Cafeeiro do mundo está no Brasil, mais precisamente no Estado de Minas Gerais e, de acordo com o levantamento de abril de 2004 da Associação Brasileira da Indústria de Café - ABIC (convênio firmado entre MAPA - S.P. C e Conab), Minas foi o responsável por 41,81% de toda a produção brasileira, cerca de 12.050 (mil sacas de 60 kg beneficiadas) na safra 2003/2004.

As atividades para despolpa dos frutos do cafeeiro contribuem para a redução do custo de secagem e para a melhoria da qualidade de bebida; porém, essa prática é geradora de grandes volumes de resíduos sólidos e líquidos, ricos em material orgânico e inorgânico que, se descartados sem tratamento, podem causar problemas ambientais, como degradação ou destruição da flora e da fauna, além de comprometer a qualidade da água e do solo (NOGUEIRA, ROBERTO e SAMPAIO, 2007).

As atividades de extração mineral são de grande importância para o desenvolvimento social, mas também são responsáveis por impactos ambientais muitas vezes irreversíveis. Estas se tornam mais visíveis com a dinamização do processo de industrialização e o crescimento das cidades, que aceleram os conflitos entre a necessidade de buscar matérias-primas e a conservação do meio ambiente (BRANDT, 1998).

Para Carneiro e Santareno (2013), o uso de bloquetes na pavimentação de ruas de médio e pequeno porte propiciaria economia, rapidez e versatilidade na manutenção, além de contribuir com o aspecto climático por irradiar menos calor do que o tradicional sistema asfáltico, devido a sua composição cimentícia de cor clara e porosa, o que possibilita a capacidade de refletir os raios solares com mais eficiência. O bloquete contribui também para as questões ambientais quanto à temperatura e à infiltração das águas pluviais no solo evitando-se os escoamentos superficiais das devastadoras enxurradas, apesar de possuir capacidade de abrasão maior comparado com o asfalto.

Oliveira (2008) afirma que vários resíduos agrícolas e os resíduos da indústria cerâmica são candidatos para entrar na preparação do concreto na obtenção do bloquete e diminuir a presença do cimento na elaboração desse produto. O pavimento intertravado, que é um tipo de bloquete, deve começar a ser visto com outros olhos pelos órgãos públicos, responsáveis pela pavimentação de vias, pois além de proporcionar melhorias estéticas, técnicas e de redução de custos para os transportes, em vias não pavimentadas, geram a utilização intensa de mão de obra local, proporcionando um aumento da receita familiar com a geração de novos empregos.

O objetivo desta pesquisa é avaliar o comportamento de bloco intertravado em concreto verde, com menor custo que o convencional e econômico em recursos naturais, neste caso, o cimento, transformando-o em um produto economicamente viável e eficiente, fazendo a investigação da possibilidade de materiais alternativos na manufatura de blocos de pavimentação usando a mistura de resíduos da agricultura (palha de café) a fim de reduzir a porcentagem de cimento.

2 REFERENCIAL TEÓRICO

Segundo Moreira (2003), a produção de café no mundo vem aumentando, em média, um milhão de sacas de 60 kg por ano nos últimos 30 anos. Em 1970, o volume

total mundial era 65-70 milhões de sacas, na década de 80 subiu para 80-90 milhões e, na década de 90, atingiu 90-100 milhões de sacas. Desde 1999, vem ultrapassando 100 milhões de sacas e, de acordo com a OIC (Organização Internacional do Café – 2002), de outubro de 2001 a setembro de 2002 foram colhidas 113 milhões de sacas de café, havendo uma tendência em manter ou mesmo aumentar a produção.

Segundo o Sumário Mineral/2001, publicado pelo DNPM (2002), a mineração da areia em leitos de rios é responsável por 90% da produção brasileira; no Estado de São Paulo, a relação é de: 45,0% é proveniente de várzeas, 35,0% de leitos de rios e o restante de outras fontes.

Um tipo de bloquete é o bloco intertravado que, segundo Santos e Borja (2007), são peças pré-moldadas que surgiram visando desenvolver a estrutura de estradas e vias urbanas possuindo dimensões e qualidades padronizadas, exigindo alto controle no processo de fabricação; no entanto, sua aplicação é de fácil manuseio, não necessitando de mão de obra especializada e outra característica de destaque neste tipo de pavimento é sua manutenção, que, ao contrário de outros tipos de pavimento que demandam equipamentos dispendiosos, pode ser realizada com uma pequena equipe e ferramentas manuais.

Desde a década de 1980, com a disponibilidade no mercado de equipamentos de grande produtividade e com elevado grau de precisão dimensional, a indústria de pavimentos de peças pré-moldadas de concreto (PPC) vem crescendo em grandes proporções em todo o mundo, inclusive no Brasil. O que era um tipo de material utilizado apenas em áreas que demandavam efeitos arquitetônicos ou paisagísticos, deu lugar a um material único extremamente versátil para harmonizar qualquer tipo de pavimento, inclusive o industrial e rodoviário, tanto esteticamente quanto estruturalmente, o pavimento intertravado (SANTOS e BORJA, 2007).

O pavimento formado por bloquetes, assim como outros poucos métodos, são estruturas que permitem ao pavimento em condições naturais, absorver parte da água que passa por ele e de fazer 40% voltar à atmosfera por meio da evapotranspiração. São os espaços porosos que garantem permeabilidade ao pavimento, reproduzindo as condições normais de solo. Assim, o uso do pavimento permeável facilita a absorção da água, fazendo-a chegar ao lençol freático e aumentando a disposição de água potável. Além disso, a energia solar que antes era refletida pelo asfalto ou outros tipos de pavimentação passa a ser absorvida pelos blocos, baixando a temperatura em até 2°C e reduzindo custos de energia, como o uso do ar-condicionado, por exemplo (BISPO, 2011). São inúmeros os benefícios na utilização de bloquetes, no quadro 1 abaixo podemos destacar alguns desses benefícios com relação a outros tipos de pavimentação.

Estudos feitos por Folleto et al. (2005) comprovam que o uso da cinza de casca de arroz como fonte de sílica no cimento diminui a resistência à compressão, aumenta a durabilidade do concreto e reduz a porosidade, o que é extremamente importante em muitas aplicações, tais como canais de irrigação, concretos resistentes à poluição e às intempéries, pisos resistentes à abrasão etc. Várias pesquisas mostram que o cimento pode ser produzido a partir de cinza de casca de arroz com sucesso, devido ao seu baixo custo em substituição à areia.

Já existem ideias no mercado, voltadas à utilização de resíduos na fabricação de bloquetes, um dos exemplos que já foram estudados é a da sua produção com adição de resíduos da recauchutagem de pneus.

De acordo com Fioriti, Ino&Akasaki (2010), o uso de resíduos do processo de recauchutagem de pneus diminui a resistência à compressão dos bloquetes, mas sempre

chegando a valores aceitáveis pela NBR 9781 (ABNT, 1987b), apresenta também índices de absorção de água por imersão abaixo do limite típico máximo estipulado pela NBR 12118 (ABNT, 2007), que se refere aos blocos de concreto para alvenaria; ademais, nos ensaios de resistência ao impacto, foi visível o aumento da capacidade de absorção de energia (tenacidade) dos blocos. Com isso, eles concluíram que blocos intertravados com adição de resíduos de pneus podem ter sua utilização em ambientes com solicitações leves, como, por exemplo, em calçadas, praças, ciclovias e condomínios residenciais.

Quadro 1 - Vantagens na Utilização de Bloquetes.

CARACTERÍSTICAS	BLOQUETES	ASFALTO	PARALELEPÍPEDO
Durabilidade ilimitada	X		X
Baixo custo com obras subterrâneas	X		X
Removível e reaproveitável	X		X
Dispensa equipamentos caros e especiais barulhentos para sua remoção	X		X
Dispensa manutenção periódica	X		
Dispensa capina periódica	X	X	
Insensível a agentes químicos	X		X
Não sujeito a trincas por fenômenos de dilatação, retração, flexão e oxidação	X		X
Tem duas faces de uso	X		X
Boa velocidade de aplicação	X	X	
Dispensa mão de obra especializada para sua aplicação	X		X
Dispensa equipamentos caros e especiais para a sua aplicação	X		X
Dispensa betume para rejuntamento	X	X	
Não é perecível, é estocável	X		X
Confortável e adequado ao trânsito veloz de veículos modernos	X	X	
Anti-derrapante Anti-derrapante	X		
Proporciona trânsito silencioso e isento de vibrações	X	X	
Cor clara proporciona maior eficiência da iluminação pública e melhor visibilidade	X		
Não aquece o ambiente	X		
Confortável ao trânsito de pedestres	X	X	
Confortável ao trânsito de patins, skates, bicicletas, e cadeira de rodas	X	X	
Satisfaz necessidade estética	X		X
O próprio pavimento possibilita demarcação ou decoração indelével	X		
Intertravado	X		
Redistribui cargas estáticas e dinâmicas	X	X	
Quantidade de Vantagens	25	08	11

3 METODOLOGIA

Devido à semelhança com a areia, as peneiras utilizadas para a separação das cinzas da matéria orgânica ou inorgânica presente nas cinzas são as mesmas utilizadas para a areia, assim como utilizado por outros autores como Lins (2006) e Oliveira (2015). Para obtenção dos corpos de prova, a palha da casca de café já triturada e incinerada pelo doador foi separada de qualquer matéria orgânica, sendo utilizada uma peneira número 4 de 425 µm atendendo à ISO 3310/1 e adicionado a mistura respeitando ao planejamento fatorial. A figura 1 mostra as cinzas ainda sem a separação de matéria orgânica no local onde são depositadas após sua incineração para completa secagem.

Figura 1 - Depósito das cinzas para secagem.

A Figura 2 mostra as cinzas já peneiradas e sendo pesadas de acordo com as proporções estabelecidas.

Figura 2 - Cinzas da casca de café.

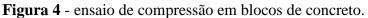
Nesta primeira abordagem, realizamos testes em blocos de concreto substituindo parte do cimento pela cinza da palha do café na proporção de 0%,12,5%, 25%, 37,5% e 50% do volume. Para cada porcentagem, foi feito um número de dois blocos de concreto de acordo com a norma NBR 12118 (2013). Para a análise estatística, foi necessário um planejamento fatorial de experimentos do tipo 2^k, sendo k o número de fatores, com dois níveis para cada fator. O software utilizado para o tratamento dos dados foi o Minitab® sendo feita a análise de variância e teste de turkey, as devidas proporções são especificadas na Tabela 1 a seguir juntamente com a ordem de rodagem dos testes.

Tabela 1- Proporções e ordem dos testes.

Composição	Cimento	Cinzas
1	50%	0%
3	25%	25%
2	0%	50%
4	37,5%	12,5%
5	12,5%	37,5%

Costa e Silva (2015, p.10) afirmam que, em ensaios já realizados por outros autores, pode-se observar que a substituição de parte dos componentes por cinzas exige uma maior quantidade de água na mistura, tornando necessária uma modificação no traço padrão estabelecido para cada porcentagem e que tal comportamento já fora previsto em outros artigos envolvendo o mesmo material.

Para a execução dos experimentos, as matérias-primas do concreto e as cinzas da palha de café foram separadas e pesadas em quantidades desejadas de cada experimento e, então, misturadas e hidratadas para a obtenção do traço. Foi feita a mistura das matérias primas e adicionado água para a hidratação e homogeneização da mistura e então foram alimentados os moldes para a obtenção dos corpos de prova mostrados na Figura 3 no momento de submersão em água. O molde escolhido para se fazer os corpos de prova é de 10 cm de diâmetro, logo, a altura de 20 cm visto que seguem as especificações da NBR 5738 (2003).


Figura 3 - Corpos de Prova.

A composição básica do concreto verde é até 40% em peso de cimento e até 20% em peso de substrato da casca de café, 20% de areia, 30% de pedra e 10% de água. Com a análise de variância dos experimentos, foi possível observar as possíveis interações entre os diversos fatores com o menor número possível de experimentos.

4 RESULTADOS E DISCUSSÕES

Após o procedimento de cura, os blocos foram submetidos a ensaio de compressão conforme mostra Figura 4 de acordo com norma NBR 12118 (2013).

O teste de compressão foi realizado para as 5 composições diferentes e seus resultados estão representados na Tabela 3. A tabela mostra que as medidas para as composições 1,3,5 foram próximas, sendo necessário a análise estatística para a determinação da influência da cinza na composição.

Tabela 2- Resultados no teste de compressão.

Composição	Cimento	Cinza	Compressão
1	50%	0%	3,21 ton
2	25%	25%	0,83 ton
3	0%	50%	2,81 ton
4	37,5%	12,5%	1,75 ton
5	12,5%	37,5%	3,24 ton

Da análise de variância entre a cinza representada na Tabela 4, é possível notar que os valores das variâncias (F_0) quando comparados aos valores de P, possui relevância estatística, ou seja quantidade de cinzas influencia a resistência a compressão dos corpos de prova.

Tabela 3 - Resultados no teste de compressão, analise de variância.

Fonte	Graus de Liberdade	Somatorio de Quadrados	Quadrado Médio	F	Р
Fatores	1	11,215	11,215	19,64	0,002
Erro	8	4,568	0,571		
Total	9	15,783			

A Figura 5 mostra o gráfico da resistência a compressão em relação à quantidade de cinza. Para analisar o impacto das cinzas nos corpos de provas, foi utilizado o teste de turkey que é mostrado na Tabela 4 e Figura 5. O teste pôde comprovar que é estatisticamente significante o efeito da cinza no bloquete e a figura mostra que a cinza possui baixa influência na resistência a compressão do compósito, o que leva a crer que a palha de café, depois de queimada, possa a ter propriedades polzolanas, ademais, por falta de dados, não é possível comportar essa afirmação.

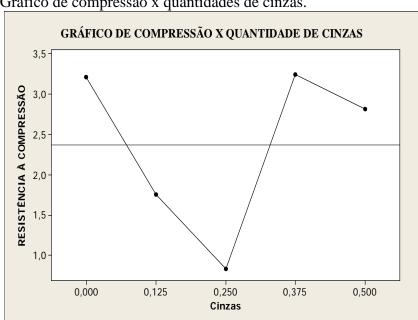


Figura 5 - Gráfico de compressão x quantidades de cinzas.

Tabela 4 - Resultados no teste Turkey.

Compressão	5	2,3680	A
Cinzas	5	0,2500	В

Figura 6 - Gráfico da análise de efeitos.

Para elaborar o melhor traço a fim de obter as melhores características nos bloquetes, foi feito um gráfico mostrando a análise de desejáveis representado na Figura 6, que indica a proporção ideal de cinza de café na mistura.

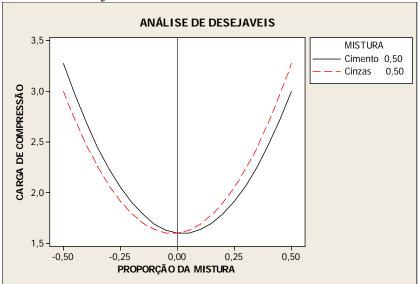


Figura 7 - Gráfico de Desejáveis.

5 AGRADECIMENTOS

À Faculdade Vértice Univértix que nos forneceu todos os materiais necessários para essa empreitada e ao senhor João Gardingo, dono da Cafeeira São João, que também contribuiu nos fornecendo as cinzas da casca de café e à Fapemig pelo apoio e financiamento.

6 CONCLUSÃO

Este trabalho deu-se em introduzir o estudo das cinzas da casca de café na fabricação de bloquetes feitos a partir do concreto verde.

O acréscimo de cinzas da casca de café altera as propriedades do concreto. No entanto, mesmo com a queda da resistência à compressão, o baixo custo do material e a prerrogativa da cinza da casca de café ser tratada como um resíduo poluente na indústria cafeeira, torna-se viável sua utilização em função da economia do uso do cimento.

Através do teste de Turkey, comprova-se que é estatisticamente significante o efeito da cinza no concreto e, ao vermos que a cinza possui baixa influência na resistência à compressão do compósito, permite-se concluir que a palha da casca de café, depois de triturada e encinerada, possa ter propriedades polzolanas.

Após a execução dos testes de compressão, averiguou-se que o traço de Concreto Verde que comportou maior carga compressiva foi a composição 5, segundo a Tabela 2.

Ideias do gênero vêm ganhando força no mercado e devem ser cada vez mais encorajadas devido à economia e aos danos ao meio ambiente que métodos convencionais trazem. Segundo Ganjian, Jalull e Sadeghi-Pouya (2015), desde 1970, foram feitas tentativas para tentar substituir parcialmente o cimento Portland por outros materiais no concreto e foram descobertas muitas formas de polzolanas, calcários e metacaulinitas, sendo possíveis alternativas naturais ao cimento Portland, ademais nenhuma substituição do cimento é pesquisada.

Com as comparações feitas, pode-se afirmar que as propriedades mecânicas foram satisfatórias com o acréscimo das cinzas.

7 REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNCIAS. **NBR12118-Concreto:** Blocos vazados de concreto simples para alvenaria - Métodos de ensaio, Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNCIAS. **NBR5738-Concreto:** Procedimento para moldagem e cura de corpos-de-prova, Rio de Janeiro, 2003.

BISPO, H. **Pavimento permeável ajuda na drenagem e evita alagamentos nas vias.** Recife: Universidade Federal de Pernambuco - UFPE, 2011. Disponível em: https://www.ufpe.br/agencia/index.php?option=com_content&view=article&id=41778:pavimento-permeavel-ajuda-na-drenagem-e-evita-alagamentos-nas-vias&catid=267&Itemid=77. Acesso em: 03.fev.2016.

BRANDT, W. **Avaliação de cenários em planos de fechamento de minas**. In: DIAS. L.E.; MELLO, J.W.V. (Eds.). Recuperação de áreas degradadas. Viçosa, MG: UFV/DPS/Sociedade Brasileira de Recuperação de Áreas Degradadas, 1998. p. 131-134.

CARNEIRO, J.; SANTARENO, D. M. Alternativa de pavimentação em bloquetes. [S.I.]: JesoCarneiro, 2013. Disponível em: http://www.jesocarneiro.com.br/cidade/alternativa-de-pavimentacao-em-bloquetes.html. Acesso em: 01.fev.2016.

COSTA, F. L. da; SILVA, A. J. P. da. Blocos vazados modulares de concreto inovado com adição de cinzas do bagaço da cana-de-açúcar. **REVISTA DO CEDS.**SãoLuíz, v. 1 n. 1, 16p, 2015.

DEPARTAMENTO NACIONAL DE PRODUÇÃO MINERAL – DNPM: Extração de areia. Brasília, 17 de outubro 2002. Disponível em: http://www.dnpm.gov.br/. Acesso em 03.fev.2016.

FIORITI, C. F.; INO, A.; AKASAKI, J. L. Análise experimental de blocos intertravados de concreto com adição de resíduos do processo de recauchutagem de pneus. **ActaScientiarum. Technology**, Maringá, v. 32, n. 3, p. 237-244, 2010.

FOLLETO, E. L. *et al.* Aplicabilidade das cinzas da casca de arroz. **Química Nova,** São Paulo, v. 28, n. 6, p. 4-5, dez. 2005.

GANJIAN, E.; JALULL, G.; SADEGHI-POUYA, H. Using waste materials and by-products to produce concrete paving blocks. Construction and Building Materials, [S.I.], 77, 270-275, January, 2015.

MOREIRA, C. F. Caracterização de Sistemas de Café Orgânico Sombreado e a Pleno Sol no Sul de Minas Gerais, Piracicaba. 2003. Dissertação/Mestrado em Ecologia e Agroecossistemas, Escola Superior de Agricultura "Luiz de Queiroz" - USP, Piracicaba.

NOGUEIRA, R. M.; ROBERTO, C. D.; SAMPAIO, C. P. **Desmucilagem do café: uma decisão pela qualidade.** Viçosa: CaféPoint, 2007. Disponível em: http://www.cafepoint.com.br/radares-tecnicos/poscolheita/desmucilagem-do-cafe-uma-decisao-pela-qualidade-33995n.aspx. Acesso em: 25.jan.2016.

OLIVEIRA, D. da C.; SOUZA, R. E. de. VARIAÇÃO DA RESISTÊNCIA À COMPRESSÃO EM COMPÓSITOS DO TIPO CONCRETO VERDE COM A ADIÇÃO DE CINZAS DE CASCA DE CAFÉ. In: XIX **Encontro Latino Americano de Iniciação Científica**, 19., 2015, São José dos Campos. *Anais...* São José dos Campos: UNIVAP, 2015. 1 CD.

OLIVEIRA, M. de. Concreto Verde. **Fafesp.** 2008. Disponível em: http://revistapesquisa.fapesp.br/2008/04/01/concreto-verde/> Acesso em: 26. Fev. 2015.

SANTOS, A. V. dos; BORJA, E. V. de. AVALIAÇÃO DAS PROPRIEDADES MECÂNICAS DE BLOCOS INTERTRAVADOS COM RESÍDUO DE PNEU RECICLADO. **Holos**, Natal, v. 3 n. 23, p. 52-60, 2007.

Sindicafé-MG: O café no mundo. [S.I.]: 2004. Disponível em: http://sindicafe-mg.com.br/plus/modulos/conteudo/?tac=cafe-no-mundo. Acesso em: 25.jan.2016.