

# CENTRO UNIVERSITÁRIO UNIFACIG

# ANÁLISE DO EFEITO ANSIOLÍTICO DA KAVA-KAVA SOB OS SINTOMAS DELETÉRIOS DO DESMAME DE BENZODIAZEPÍNICOS

Lara da Costa Lopes

Manhuaçu

2023



# Lara da Costa Lopes

# ANÁLISE DO EFEITO ANSIOLÍTICO DA KAVA-KAVA SOB OS SINTOMAS DELETÉRIOS DO DESMAME DE BENZODIAZEPÍNICOS

Trabalho de Conclusão de Curso Apresentado no Curso Superior de Medicina no Centro Universitário UNIFACIG, como requisito parcial à obtenção de título de médico.

Orientadora: Dra Delkia Seabra de Moraes

Manhuaçu

2023



### Lara da Costa Lopes

# ANÁLISE DO EFEITO ANSIOLÍTICO DA KAVA-KAVA SOB OS SINTOMAS DELETÉRIOS DO DESMAME DE BENZODIAZEPÍNICOS

Trabalho de Conclusão de Curso apresentado no Curso Superior de Medicina no Centro Universitário UNIFACIG, como requisito parcial à obtenção de título de médico.

Orientadora: Drª Delkia Seabra de Moraes

Banca examinadora

Data de Aprovação: \_\_/\_\_/\_

Drª Delkia Seabra de Moraes

Pedro Augusto Alves Costa

M.ª Maria Larissa Bitencourt Vidal

Manhuaçu

2023



Resumo: Atualmente a ansiedade e a depressão são tratadas com muitos medicamentos, de diferentes classes farmacológicas, sendo os benzodiazepínicos os mais utilizados. Porém, os benzodiazepínicos podem causar dependência física e psicológica se forem usados acima do tempo preconizado. Sendo assim, faz-se necessário realizar o desmame dessa medicação para que não ocorra o vício e consequentemente a abstinência a esses medicamentos, causando sintomas como tonturas, tolerância, dependência, além de aumentar o risco de quedas. Estudos científicos comprovam o significativo efeito terapêutico dos fitoterápicos, sendo assim, espera-se observar nesta pesquisa, o potencial terapêutico da Kava-kava (Piper methysticum) no desmame do medicamento Rivotril (clonazepam) devido à similaridade de suas características ansiolíticas, indutoras de sono, relaxantes e até certo efeito como potencial antipsicótico, em relação aos benzodiazepínicos, classe farmacológica do clonazepam, com o intuito de diminuir os sintomas da abstinência ao clonazepam, especificamente e melhorando a qualidade de vida do paciente no processo de desmame deste medicamento. Durante o processo da pesquisa, foram realizados experimentos com roedores, sendo as medicações administradas diariamente e os testes sendo aplicados semanalmente, a fim de quantificar os níveis de ansiedade das amostras. Ao final do experimento verificou-se a capacidade ansiolítica da kava, sobretudo quando administrada concomitantemente com o clonazepam, contudo, o seu uso na introdução do desmame não apresentou resultados significativos; concluindo que a kava possui sim efeitos sedativos que diminuíram significativamente a ansiedade dos roedores, principalmente no que diz respeito ao efeito rebote produzido pelo clonazepam, contudo não há benefício em introduzi-la no desmame para diminuir os efeito negativos causados por este processo.

Palavras-chave: Ansiedade, kava-kava, benzodiazepínico, clonazepam, desmame.



# SUMÁRIO

| 1. Introdução                 | 8  |
|-------------------------------|----|
| 2. Desenvolvimento            | 9  |
| 2.1 Referencial Teórico       | 9  |
| 2.2 Metodologia               | 10 |
| 2.3 Discussão                 | 12 |
| 3. Conclusão                  | 16 |
| 4. Referências bibliográficas |    |



# LISTA DE IMAGENS

| lmagem 1. Labirinto em T elevado | 11 |
|----------------------------------|----|
| Imagem 2. Placa aquecida         | 11 |
| Imagem 3. Termostato             | 11 |



# **LISTA DE FIGURAS**

| Figura 1. Explorações do braço fechado do labirinto        | . 13 |
|------------------------------------------------------------|------|
| Figura 2. Explorações dos braços abertos do labirinto      | . 13 |
| Figura 3. Eventos ao longo do tempo (Grupo experimental 1) | . 14 |
| Figura 4. Eventos ao longo do tempo (Grupo experimental 2) | . 15 |
| Figura 5. Eventos ao longo do tempo (Grupo controle)       | 15   |



# LISTA DE TABELAS

| Tabela  | 1 - Coeficiente | de Correlaçã | ão de Pearson (   | Teste da Placa   | )16      |
|---------|-----------------|--------------|-------------------|------------------|----------|
| i abeia | i - Coenciente  | ue contelaçã | ao de i caisoii ( | i este ua i iaca | <i>]</i> |

# 1. INTRODUÇÃO

Atualmente os transtornos psíquicos estão em destaque, principalmente no que diz respeito aos transtornos da ansiedade e da depressão (Haider *et al.* 2015; Ding *et al.* 2014). Para o tratamento destes transtornos, algumas classes farmacológicas são prescritas de forma individual ou associada, como os antidepressivos, betabloqueadores, anticonvulsivantes, antipsicóticos e os benzodiazepínicos (BZP) (Ooi *et al*, 2018). Dentre estas classes farmacológicas, os BZP estão entre os medicamentos mais utilizados pela população devido ao rápido alívio dos sintomas causados pela ansiedade e a acessibilidade financeira, pois são considerados medicamentos de baixo custo, além de serem fornecidos pelo SUS (Casali, 2010).

No entanto, apesar de sua eficácia terapêutica, o uso destes fármacos traz efeitos adversos significativos à saúde do paciente, como a sonolência diurna que pode levar a quedas, principalmente nos idosos, causando fraturas e concussão (Cumming RG, Le Couteur DG, 2003). Seu uso prolongado pode acarretar prejuízos cognitivos como a perda de memória e até ao transtorno degenerativo progressivo e fatal, conhecido como o mal de Alzheimer (Salzman, 2020); e ainda, a dependência física e psicológica promovida pelo aumento da tolerância a esta classe de medicamento, devido ao mecanismo conhecido como down regulation (Lyons et al. 2000), fazendo-se necessário o aumento de doses para chegar ao efeito terapêutico esperado. Sendo assim, a recomendação é que os BZP não devem ser usados por mais de oito semanas, devendo ser esse o tempo máximo de uso destes fármacos (Ooi et al, 2018). Porém, observa-se que este tempo limítrofe, por vezes é ultrapassado e quando os prescritores vão realizar a retirada gradual destes medicamentos, conhecido também como "desmame", os pacientes apresentam os sinais da abstinência como insônia, angústia, agitação e irritabilidade (Esteves, 2015) o que os leva ao contínuo uso desta classe medicamentosa (Da Silva e Santos, 2019).

Devido aos males trazidos pelo uso indevido dos benzodiazepínicos, uma minoria dos pacientes opta por utilizar os medicamentos fitoterápicos que possuem a mesma finalidade terapêutica, no entanto, não apresentam os sintomas de abstinência descritos acima. Segundo a Organização Mundial de Saúde (OMS, 2000; Rates, 2001) os fitoterápicos são medicamentos cujos componentes são extraídos de partes das plantas medicinais e que por vezes são usados como alternativas terapêuticas no lugar de medicamentos considerados convencionais (Justo *et al.* 2008) como a Valeriana, a Passiflora e a Kava-kava, todos conhecidos pelos seus efeitos ansiolíticos (Andrade, 2020).

Dentre essa quantidade de espécies vegetais, a *Piper methysticum*, conhecida como Kava ou Kava-kava ou ainda comercialmente como Ansioprax, Laitan e Kavasedon, dentre outros, demonstrou ser uma droga de efeito hipnótico e ansiolítico significativo, sendo eficaz na melhoria da qualidade de sono (Cunha *et al.* 2003). Existe uma similaridade da ação da Kava com a ação dos benzodiazepínicos, pois ela atua inibindo os mesmos receptores GABA-A no hipocampo, amígdala e medula oblongata, mimetizando a ação das benzodiazepinas (Raduege *et al.* 2004). Além dos receptores GABA-A, este notável fitoterápico também atua nos receptores dopaminérgicos tipo 2, promove bloqueio dos canais de sódio e cálcio, reduz a

recaptação neuronal dos neurotransmissores, noradrenalina e dopamina, e ainda inibe a desaminação oxidativa das aminas biogênicas realizada pela monoamina oxidase (MAO-B) Krum et al. (2021). No entanto, os BZP possuem ação hipnótica mais pronunciada que o fitoterápico Kava, sendo mais eficiente em algumas situações clínicas.

Segundo Cunha et al. (2003) a kava-kava é composta por várias substâncias atividade farmacológica. sendo as com cavalactonas responsáveis pelas atividades ansiolíticas da Kava (Justo e Silva, 2008) sem causar a tolerância e os sintomas de dependência (Raduege et al., 2004). Além disso, Krum et al. (2021), demonstrou ser a kava eficaz no combate ao esteriotipado comportamento causado pelas anfetaminas inapetência, dentre outros) sendo possível observar a partir disso, o enorme potencial da kava atuando no sistema nervoso central, controlando diversas funções, dentre elas a ansiedade.

#### 2.DESENVOLVIMENTO

#### 2.1. Referencial Teórico

Segundo Resende e Cocco (2002) os conhecimentos que hoje fomentam a fitoterapia, são resultado de práticas de cura cultivados desde a época colonial; apresentando suma importância devido a sua comprovada eficácia. Existem diversas espécies vegetais com propriedades terapêuticas que servem de base para a fitoterapia (Cunha et al., 2003), e dentre elas encontra-se a kava-kava (*Piper methysticum*). A kava é composta por ácido benzóico, ácido cinâmico, açucares, sais minerais e pironas, sendo estas últimas, as responsáveis por seus efeitos terapêuticos (Justo e Silva, 2008). De acordo com Raduege et al. 2004, a kava-kava atua nos receptores GABA-A no hipocampo, nos receptores dopaminérgicos tipo 2 tendo sua ação semelhante a das benzodiazepinas (BZP), mostrando-se eficaz no controle de sintomas ansiosos, provocando efeito hipnótico e ajudando na melhoria da qualidade do sono (Shinomiya et al. 2005).

Os medicamentos usualmente utilizados para tratar sintomas de ansiedade, como as benzodiazepinas causam dependência, tolerância, sonolência diurna, dentre outros sintomas (Ooi *et al.* 2008). Devido a esta propriedade química que promove a dependência por esta classe farmacológica aos pacientes, é necessário que estes medicamentos, os benzodiazepínicos, sejam utilizados por curto espaço de tempo (no máximo 2 meses) de acordo com Oii *et al.* (2018) e que seja realizado o desmame após o seu uso, pois a sua retirada abrupta pode causar sintomas de abstinência nos pacientes como insônia, angústia, agitação e irritabilidade (Esteves, 2015). No entanto, os pacientes utilizam esta classe farmacológica por tempo superior ao estipulado - e seu desmame já não é mais possível somente com a redução da dose do medicamento em uso - pois os sintomas de abstinência são mais difíceis de suportar, levando ao uso dos benzodiazepínicos por anos por estes pacientes.

Diante disso, viu-se na kava uma alternativa terapêutica no auxílio do processo de desmame desses medicamentos, pois a kava é capaz de causar efeito ansiolítico e relaxante com o benefício de não causar os sintomas supracitados despertados pelo uso dos benzodiazepínicos. Logo, sabendo dos efeitos deletérios dos BZP e conhecendo o potencial fitoterápico da kava, despertou o interesse em

observar o efeito deste fitoterápico no desmame aos benzodiazepínicos, uma vez que a Kava não produz dependência física ou psicológica como os conhecidos popularmente como "tarjas pretas", onde se inclui o clonazepam, pertencente à classe farmacológica dos benzodiazepínicos (Raduege *et al.*, 2004).

## 2.2. Metodologia

### 2.1 Delineamento de estudo

O projeto consta de um estudo intervencionista prospectivo, objetiva-se avaliar a ação ansiolítica do extrato de kava-kava sobre os efeitos deletérios advindos do desmame dos benzodiazepínicos (BZP).

#### 2.2 Tamanho da Amostra

O experimento será realizado em vinte e quatro camundongos da linhagem Swiss, da espécie *Mus musculus*, todos do sexo masculino, com peso superior a 25 gramas, ausentes de jejum e não devem apresentar lesões aparentes. Os camundongos serão divididos em 3 grupos: um grupo controle recebendo apenas benzodiazepínicos (BEco, n = 8), o grupo experimental 1 (GE1, n = 8) recebendo BZP e kava juntos, do inicio ao fim do experimento, e o grupo experimental 2 (GE2, n = 8) recebendo o BZP e tendo a kava introduzida somente na fase de desmame dos BZP, observe que, o grupo controle são aqueles que receberão apenas os BZP, ilustrando os efeitos deletérios dessa classe farmacológica em seres que já estão dependentes da medicação, comparando com o grupo que receberá a Kava como alternativa ansiolítica a fim de amenizar os danos.

#### 2.3 Materiais e métodos:

#### 2.3.1 Drogas

Os medicamentos serão administrados por via oral nos roedores, sendo estes: clonazepam 2,5 mg, 1 mg/kg/dia dissolvido em soro fisiológico 0,9% 0,25 ml, e extrato seco de kava-kava 75 mg (lote: 211236), sendo a dose máxima tolerada de 20 mg/kg/d, baseado no peso dos roedores e respeitando a dose máxima, serão administrados inicialmente de acordo com o peso 1,56 mg de kava-kava diluído em 0,3 ml de soro fisiológico 0,9% e 0,00625 mg de clonazepam inicialmente, sendo a dose aumentada gradualmente a cada quinze dias até atingir 0,01875 mg/d. O desmame dos animais será realizado de maneira similar ao estudo de Queirós (2017), quando a dose dos medicamentos será reduzida em um terço (0,005 mg) a cada semana após 45 dias do uso diário dos medicamentos. Foram utilizadas seringas de 1 ml para administrar as medicações aos roedores.

## 2.3.2 Aparatos Experimentais

Os testes foram aplicados semanalmente para avaliação dos níveis de ansiedade. Os animais serão submetidos a dois testes, sendo um deles do labirinto em T elevado (Imagem 1) - que é composto por três braços de madeira com dimensões iguais (45 cm de comprimento dos braços por 15 cm de altura do braço coberto) elevado 45 cm do chão, os outros dois braços (perpendiculares ao braço com paredes) não possuem paredes - que busca avaliar a ansiedade por meio da exploração dos braços do labirinto, durante 8 minutos. E o teste da placa aquecida (Imagem 2) — 35 cm x 25 cm é composta por um termostato e um sensor de

temperatura (Imagem 3) - onde o animal fica sobre a placa de metal aquecida por 6 minutos e verifica-se quantas vezes o animal reage à temperatura que varia de 21 a 35  $^{\circ}$ C.

Imagem 1 – Labirinto em T elevado



Imagem 2 – Placa Aquecida



Imagem 3 - Termostato



#### 2.4 Procedimentos

Os animais serão posicionados em área de teste 24 horas antes dos experimentos e terão 10 minutos de habituação do ambiente; os testes serão aplicados semanalmente. Demonstrando compromisso em diminuir ao máximo o estresse dos animais, estes serão condicionados a um ambiente calmo, com luminosidade e temperatura adequadas, além de gaiolas limpas com alimento e água *ad libitum*, pois segundo o livro de Yamanoto: "Comportamento Animal", o bem-estar animal está condicionado à harmonia do ambiente onde vive e da maneira como é tratado. É de suma importância citar que o presente projeto foi aprovado pela Comissão de Ética em Uso Animal (CEUA) do Centro Universitário UNIFACIG, protocolo número 0001/22.

#### 2.4 Processamento dos dados

Todos os resultados foram expressos como média  $\pm$  EPM e as comparações estatísticas foram feitas usando o teste ANOVA seguido pelo teste de Tukey-Kramer, com p < 0,05 indicando significância (software Microcal Origin).

#### 2.3. Discussão de Resultados

Uma vez que a kava possui potencial ansiolítico e hipnótico e age nos mesmos receptores que os benzodiazepínicos (BZP) representados aqui pelo clonazepam (RADUEGE et al. 2004). Como já mencionado, os BZP acarretam os efeitos colaterais supracitados, sintomas deletérios durante o desmame medicamentoso (OOI et al. 2008) e geram também um efeito chamado "ansiedade rebote", que de acordo com Menezes (2019) é um efeito paradoxal à ação farmacológica dos BZP, no qual existem quadros de agitação e nervosismo nos usuários do fármaco. A partir disso, surgiu a ideia de realizar um experimento cujo objetivo seria verificar se o efeito verossímil da kava em relação aos BZP seria benéfico para diminuir os sintomas que se originam do desmame do clonazepam em seres que já fazem o uso da medicação e já a tem em sua circulação por tempo suficiente a ponto de desencadear os sintomas já mencionados. A partir dos resultados obtidos do experimento, foi corroborado o que está expresso em diversos estudos, como o de Sarris (2020), no qual a kava se mostrou mais efetiva para tratar transtornos de ansiedade do que o placebo, já que as amostras do teste se mostraram de fato mais sedadas com a kava, tanto em uso isolado como em uso conjunto com o clonazepam. Todavia, observou-se que a kava não traz benefícios sintomáticos ao ser introduzida no momento do desmame do clonazepam.

#### 4.1 Teste do Labirinto em T elevado

A resposta aos medicamentos administrados foi observada de acordo com a exploração dos roedores aos braços do labirinto (Figura 1), sendo os resultados expressos nos gráficos abaixo.

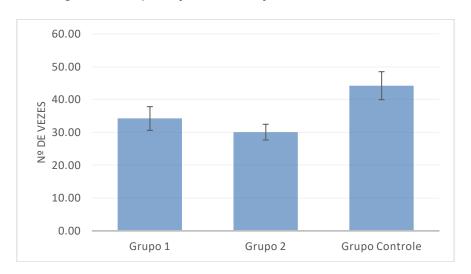



Figura 1 - Explorações do braço fechado do labirinto

Figura 1. Resultado de explorações do braço fechado do labirinto pelos grupos.

Observou-se a partir do experimento representado pela Figura 1 que a diferença de eventos entre o grupo experimental 1 onde ocorreu à administração da kava em conjunto com o clonazepam desde o início do experimento, e o grupo experimental 2 que recebeu a administração da kava somente a partir do início do desmame do clonazepam, não foi significativa. Os dois grupos apresentaram estatisticamente o mesmo nível de redução da ansiedade. Sendo assim, mesmo a kava possuindo ação ansiolítica semelhante aos benzodiazepínicos, não houve benefício ao introduzi-la quando se iniciou o desmame do clonazepam.

Contudo, os grupos experimentais 1 e 2 em relação ao grupo controle, apresentaram diferença significativa, demonstrando que houve potencialização do efeito ansiolítico quando essas substâncias foram administradas em conjunto.

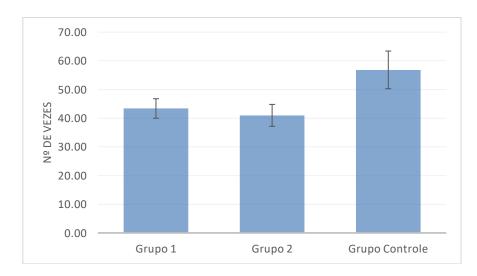



Figura 2 - Explorações dos braços abertos do labirinto

Figura 2. Resultado de explorações dos braços abertos do labirinto pelos grupos.

No experimento realizado com a exploração dos braços abertos (Figura 2), observou-se o quanto os animais estavam menos ansiosos, retificando os resultados do experimento representado na Figura 1. Ficou evidente em relação ao grupo controle, o aumento da potência de sedação do clonazepam quando este é associado à kava. Além dos dados estatísticos comprovarem esse efeito farmacológico, o método observacional também corrobora a hiporreatividade dos animais.

Nervosismo e agitação também foram observados no comportamento dos animais, sobretudo no grupo controle após a passagem do efeito sedativo promovido pelos BZP. Estes sintomas ocorrem devido ao efeito rebote promovido por essa classe farmacológica (MENDEZ, 2019).

#### 4.2 Teste da Placa Aquecida

A resposta aos medicamentos administrados foi observada de acordo com a diminuição dos eventos (coçadas na pata) ao longo das semanas, expressos nos gráficos a seguir.

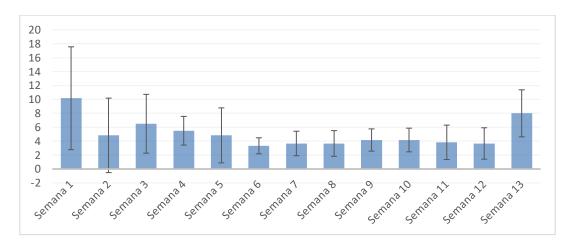



Figura 3 - Eventos ao longo do tempo (Grupo experimental 1)

Figura 3. Número de eventos em relação ao tempo do Grupo experimental 1.

Foi observado que ao longo das semanas decorridas do início do experimento, os eventos que demonstravam os níveis ansiosos nos roedores tiveram redução significativa. Ao final do experimento, quando o desmame do clonazepam estava completo e houve a retirada total da kava, observou-se novamente o aumento dos eventos, corroborando para o fato de que a kava, apesar de não ter sido efetiva para tratar a ansiedade após a retirada do clonazepam, causou significativo efeito ansiolítico nos animais, sobretudo quando administrados concomitantemente.

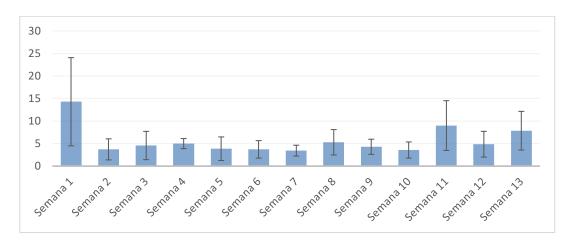



Figura 4 - Eventos ao longo do tempo (Grupo experimental 2)

Figura 4. Número de eventos em relação ao tempo do Grupo experimental 2.

Ao observamos a análise estatística dos eventos ocorridos na Figura 4, vemos a redução significativa dos níveis ansiosos ao longo do tempo. Também os animais deste grupo experimental, apresentaram hiporresponsividade, sem diferença significativa em relação ao grupo experimental 1.

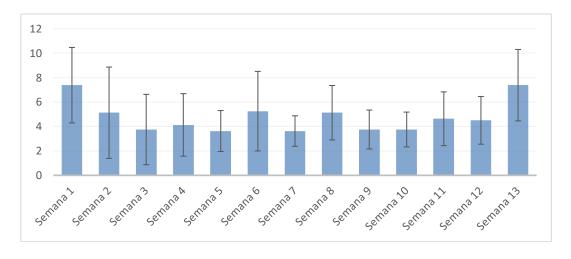



Figura 5 - Eventos ao longo do tempo (Grupo controle)

Figura 5. Número de eventos em relação ao tempo do Grupo controle.

No grupo controle também é possível observar a diminuição dos eventos ao longo das semanas de experimento. Porém, os grupos experimentais 1 e 2, apresentaram maior redução quanto ao número de eventos, demonstrando o efeito sedativo sinérgico da kava com o clonazepam.

| Tabela 1 - Coeficient |                  | . –         | / <b>T</b> / <b>D</b> \ |
|-----------------------|------------------|-------------|-------------------------|
| Lobolo 1 (Cootioiont  | a da ('arralada) | ado Dagraga | / L 0.0+0 do 1.310.00\  |
| Tabela I - Coelicieni | e de Conelacat   | TOE PEAISON | CLESIE DA FIACAL        |
|                       |                  |             |                         |

|          | ROEDOR | COEFICIENTE |
|----------|--------|-------------|
| GRUPO 1  | 1      | -0,649      |
|          | 2      | 0,036       |
|          | 3      | 0,124       |
|          | 4      | -0,161      |
|          | 5      | 0,040       |
|          | 6      | -0,648      |
|          | 1      | -0,230      |
| GRUPO 02 | 2      | -0,130      |
|          | 3      | -0,085      |
|          | 4      | -0,193      |
|          | 5      | 0,391       |
|          | 6      | 0,178       |
|          | 7      | -0,178      |
| GRUPO 03 | 1      | 0,067       |
|          | 2      | 0,226       |
|          | 3      | -0,573      |
|          | 4      | -0,144      |
|          | 5      | 0,275       |
|          | 6      | 0,312       |
|          | 7      | 0,289       |
|          | 8      | -0,136      |

Tabela 1 - Coeficiente de Correlação de Pearson (Teste da Placa)

De acordo com a metodologia estatística do cálculo do coeficiente de correlação de Pearson, pode-se observar que de fato, o número de eventos para todos os grupos teve redução significativa, corroborando para a característica farmacológica sedativa destes medicamentos. Ainda na tabela, pode-se verificar a diferença no número de animais utilizados por grupo devido ao óbito desses animais, pois com o confinamento, após passado o efeito dos medicamentos, os animais ficavam agitados e alguns agressivos, promovendo o óbito de outro animal.

## 3.CONCLUSÃO

De acordo com os resultados obtidos, pode-se concluir que os estudos que corroboram para o efeito sedativo e ansiolítico da kava mostram-se válidos, já que a sedação dos animais que tomaram este fitoterápico pôde ser observada nos experimentos. Pôde-se verificar também durante o estudo, os efeitos deletérios e paradoxais do BZP, sendo que os animais que receberam somente essa medicação experimentaram a sedação, mas também experimentaram a agitação como efeito rebote, no momento de desmame. Sendo assim, pode-se concluir que a kava e o BZP agiram de maneira sinérgica na sedação e redução dos níveis ansiosos dos roedores, e que aqueles que receberam as duas medicações, apresentaram redução ainda mais proeminente dos níveis ansiosos, em relação aos roedores do grupo controle. Apesar de não observarmos o que foi proposto no trabalho, que seria o benefício do uso da kava no momento do desmame do clonazepam, pode-se

observar um sinergismo do uso da kava mais o uso do clonazepam, já que os animais que usaram os dois fármacos apresentaram maiores níveis de sedação, sendo assim, infere-se um beneficio no uso concomitante dessas duas medicações, pois ao associarmos esses medicamentos, seria possível reduzir a concentração do clonazepam, diminuindo assim, os efeitos colaterais deletérios deste fármaco.

## 4. REFERÊNCIAS

ANDRADE, T. O uso de fitoterápicos no tratamento de ansiedade. 2020.

ANDREATINI, R.; BOERNGEN-LACERDA, R.; ZORZETTO FILHO, D. Tratamento farmacológico do transtorno de ansiedade generalizada: perspectivas futuras. Brazilian Journal of Psychiatry, v. 23, n. 4, p. 233-242, 2001.

BARBOSA, D. R.; LENARDON, L.; PARTATA, A. Kava-kava (Piper methysticum): uma revisão geral. Rev. Cien. ITPAC, v. 6, n. 3, p. 1-19, 2013.

BRASIL. Agência Nacional de Vigilância Sanitária - ANVISA. Farmacopeia Brasileira. Memento Fitoterápico, 1° Edição, 2016. Disponível em: <a href="http://bit.ly/2LMgjOy">http://bit.ly/2LMgjOy</a>.

CUMMING, Robert G.; CONTEUR, David G. Le. Benzodiazepines and risk of hip fractures in older people: a review of the evidence. CNS drugs, v. 17, p. 825-837, 2003.

CARMONA, I. M. Ansiedade induzida pelo modelo de empatia para dor: o papel da neurotransmissão GABA a-benzodiazepínica na modulação da ansiedade em camundongos. 2017.

CASALI, F. T. Avaliação do uso de benzodiazepínicos pelos usuários da unidade básica de saúde do município de Camacho-MG pela dispenção realizada na farmácia básica do SUS. 2010.

CASSIMIRO, E. E. Artigo Original Página 27 a 36.

CORDEIRO, C. H. G.; CHUNG, M. C.; DO SACRAMENTO, L. V. S. Interações medicamentosas de fitoterápicos e fármacos: Hypericum perforatum e Piper methysticum. Revista Brasileira de Farmacognosia, v. 15, n. 3, p. 272-278, 2005.

DA SILVA, D. F.; DE LUCENA SANTOS, E.V. Estratégias para a descontinuação de benzodiazepínicos em pacientes da atenção primária à saúde.

DE SÁ SILVA, G. et al. Características da população em desmame de benzodiazepínicos atendida na Atenção Primária. In: Anais do Congresso Sul-Brasileiro de Medicina de Família e Comunidade. 2014. p. 134.

DING L.; ZHANG C.; MASOOD A.; LI J.; SUN J.; NADEEM A.; et al. Protective effects of phosphodiesterase 2 inhibitor on depression and anxiety-like behaviors: Involvement of antioxidant and anti-apoptotic mechanisms. BehavBrain Res. 2014; 268:150-8.

EISENBERG, D. M. et al. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. Jama, v. 280, n. 18, p. 1569-1575, 1998.

ESTEVES, N. P. Q. Uso de fitoterápicos como aliado no desmame do consumo inadequado de benzodiazepínicos na atenção básica. 2017.

FAUSTINO, T. T.; ALMEIDA, R. B.; ANDREATINI, R. Plantas medicinais no tratamento do transtorno de ansiedade generalizada: uma revisão dos estudos clínicos controlados. Brazilian Journal of Psychiatry, v. 32, n. 4, p. 429-436, 2010.

FERREIRA, J. V. et al. Extratos secos do rizoma de Kava-kava (Piper methysticum G. Forst)-avaliação da qualidade, toxicidade aguda, atividades biológicas e biodisponibilidade de kavaína. 2019.

- GRIEBEL, Guy; SANGER, David J.; PERRAULT, Ghislaine. The use of the rat elevated plus-maze to discriminate between non-selective and BZ-1 (ω 1) selective, benzodiazepine receptor ligands. Psychopharmacology, v. 124, p. 245-254, 1996.
- HAIDER, S.; NAQVI, F.; BATOOL, Z.; TABASSUM, S.; SADIR, S.; LIAQUAT, L, NAQVI, F.; ZUBERI, N. A.; SHAKEEL, H.; PERVEEN, T. Pre treatment with curcumin attenuates anxiety while strengthens memory performance afterone short stress experience in male rats. Brain Res Bull. 2015; 115:1-8.
- LYONS, Helen R.; GIBBS, Terrell T.; FARB, David H. Turnover and Down-Regulation of GABA-A Receptor  $\alpha$ 1,  $\beta$ 2S, and  $\gamma$ 1 Subunit mRNAs by Neurons in Culture. Journal of neurochemistry, v. 74, n. 3, p. 1041-1048, 2000.
- JUSTO, S. C.; DA SILVA, C. M. Análises físico-quimicas e da pureza do extrato seco de Piper methysticum G. Forster (KAVA-KAVA). Visão Acadêmica, v. 9, n. 1, 2008.
- JUSTO, S.; C. SILVA,; C. M. Piper methysticum G. Forster (Kava-Kava): uma abordagem geral. Revista Eletrônica de Farmácia, v. 5, n. 1, 2008.
- KRUM, B. N. et al. Kava decreases the stereotyped behavior induced by amphetamine in mice. Journal of Ethnopharmacology, v. 265, p. 113293, 2021.
- LOPES, M. A. Efeitos do clonazepam sobre as respostas defensivas medidas em ratos submetidos ao labirinto em T elevado. Tese de Doutorado. Universidade de São Paulo.
- MALSCH, U.; KIESER, M. Efficacy of kava-kava in the treatment of non-psychotic anxiety, following pre treatment with benzodiazepines. Psychopharmacology, v. 157, n. 3, p. 277-283, 2001.
- MATOS, A. S.; DE SOUSA PIMENTEL, J. E.; SOUSA, J. A. Estudo Comparativo da Ação Ansiolítica da Passiflora, Kava Kava e Valeriana em Camundongos da Espécie Mus Musculus/ Comparative Study of Anxiolytic Action of Passiflora, Kava Kava and Valerian in Mice Species Mus Musculus. Saúde em Foco, v. 3, n. 2, p. 77-92, 2017.
- MENEZES, CHAIANE SILVA; TRISTÃO, Taline Canto. Benzodiazepínicos: uma revisão sistemática. 2019.
- NUNES, A. SOUSA, M. Utilização da valeriana nas perturbações de ansiedade e do sono: qual a melhor evidência. Acta MedPort, v. 24, n. Suppl 4, p. 961-6, 2011.
- OOI, S. L. HENDERSON, P.; PAK, S. Kava for generalized anxiety disorder: a review of current evidence. The Journal of Alternative and Complementary Medicine, v. 24, n. 8, p. 770-780, 2018.
- RADUEGE, K. M. et al. Anesthetic considerations of the herbal, kava. Journal of clinical anesthesia, v. 16, n. 4, p. 305-311, 2004.
- REZENDE, H. A.; COCCO, M. I. M. A utilização de fitoterapia no cotidiano de uma população rural. Revista da Escola de Enfermagem da USP, v. 36, p. 282-288, 2002.
- SALZMAN, Carl. Do benzodiazepines cause Alzheimer's disease?. American Journal of Psychiatry, v. 177, n. 6, p. 476-478, 2020..
- SARRIS, J. et al. Kava for generalised anxiety disorder: A 16-week double-blind, randomised, placebo-controlled study. Australian & New Zealand Journal of Psychiatry, v. 54, n. 3, p. 288-297, 2020.

SHINOMIYA, K. et al. Effects of kava-kava extract on the sleep—wakecycle in sleep-disturbed rats. Psychopharmacology, v. 180, n. 3, p. 564-569, 2005.

SILVA, R. F. Projeto de Intervenção: Desmame de benzodiazepínicos em usuários crônicos na Estratégia de Saúde da Família de Pedra Azul/ES. 2015.

SMITH, K. LEIRAS, C. The effectiveness and safety of Kava Kava for treating anxiety symptoms: A systematic review and analysis of randomized clinical trials. Complementary therapies in clinical practice, v. 33, p. 107-117, 2018.

VERSIANI, Marcio et al. Clonazepam na fobia social. J. bras. psiquiatr, p. 103-108, 1997.WHITE, C. M. The pharmacology, pharmacokinetics, efficacy, and adverse events associated with kava. The Journal of Clinical Pharmacology, v. 58, n. 11, p. 1396-1405, 2018.

YAMAMOTO, M. E. VOLPATO, Gilson Luiz. Comportamento animal. Natal: UFRN, 2007.