

V SEMINÁRIO CIENTÍFICO DO UNIFACIG

INIFACIG

Dias 7 e 8 de novembro de 2019

ESTUDO DE VIABILIDADE DE FUNDAÇÃO PROFUNDA PARA EDIFÍCIO COMERCIAL DE 12 ANDARES

Natália Lacerda Alvarenga¹, Carlos Henrique Carvalho Júnior², Kastelli Pacheco Sperandio³

- ¹ Graduada em Engenharia Civil, UNIFACIG, natalialacerdaalvarenga@yahoo.com.br
- ² Especialista em Estruturas de Concreto e Fundações, UNIFACIG, junior-kik@hotmail.com
- ³ Mestre em Engenharia Civil pelo CEFET-MG, UNFACIG, kastelli@sempre.unifacig.edu.br

Resumo: O presente trabalho faz um comparativo entre os três tipos escolhidos de estacas de fundação profunda: estaca trado mecânico, estaca pré-moldada e estaca hélice contínua, de modo a definir a fundação que ofereça o melhor custo benefício para a edificação em estudo. Para isso, foi realizada uma análise das vantagens e restrições de cada tipo tratado, o levantamento das características do solo no qual o edifício será construído e as cargas atuantes da edificação. A metodologia empregada realizou uma revisão bibliográfica sobre fundações profundas, investigações geotécnicas e sobre as estacas escolhidas, além de todos os levantamentos necessários sobre a edificação. Através dos métodos Aóki-Velloso e Décout-Quaresma, foram dimensionadas a capacidade de carga de cada estaca para suportar as cargas aplicadas pela superestrutura, a fim de chegar na fundação que ofereça segurança e durabilidade. Em seguida, foram levantados no mercado, os custos necessários à execução, verificando qual o tipo oferece maior viabilidade ao empreendimento. Após a análise dos resultados obtidos, os estudos mostraram que a estaca trado mecânico é a melhor solução para o empreendimento, devido ao seu menor custo em relação às demais e por não ocorrer vibração em sua execução, não causando danos nas edificações vizinhas. Os resultados encontrados foram interessantes e de suma importância em sua área de aplicação

Palavras-chave: Estacas; Fundação; Solo.

Área do Conhecimento: Engenharias

1 INTRODUÇÃO

A fundação é uma das partes mais importantes de uma edificação, por suportar todo o peso próprio da estrutura e as cargas de utilização. Sua função é descarregar as cargas da superestrutura no solo. Por esta razão é necessário obter todas as informações a respeito do solo, suas características e resistência, bem como a estrutura da construção e sua utilização, características construtivas e peso próprio, segundo Sena (2016).

As fundações podem ser classificadas em superficiais e profundas. As superficiais são definidas pela norma NBR 6122/2010 como elemento estrutural em que a carga é transmitida ao terreno pelas tensões distribuídas sob a base da fundação, e que tenha a profundidade de arrasamento em relação ao terreno adjacente. Já a fundação profunda é definida pela mesma norma como aquela que através da resistência de ponta ou resistência de fuste, ou mesmo a associação das duas, transmita a carga ao solo. De acordo com Andrzejewski (2015), a escolha da fundação para um edifício poderá ser imposta pelas condições do solo e características da edificação, com exceção destes casos, a escolha geralmente é baseada no menor custo e menor prazo de execução. Quando há limitações em relação ao uso de fundações superficiais em solos com baixa capacidade de carga, opta-se por fundações profundas.

Diante do exposto, faz-se necessário o estudo da resistência e características do solo. Essas informações são obtidas através da prospecção do subsolo. De acordo com Sena (2016) são estes os principais métodos de investigação: poços; sondagens a trado; sondagens rotativas; sondagens mistas; ensaios de cone (CPT); ensaios pressiométricos (PMT) e sondagens a percussão (SPT).

Portanto se faz necessária uma fundação profunda que atenda as cargas solicitantes da estrutura. Mas qual seria o tipo de fundação ideal? Entre os diversos tipos existentes, qual seria a que melhor transmitiria as cargas solicitantes da edificação ao solo? Qual teria o melhor custo benefício?

Este trabalho visa fazer um comparativo entre os três tipos de fundação citados quanto sua funcionalidade, custos, execução e eficácia de cada uma frente a solicitação das cargas e a

1

resistência do solo. E desenvolver uma análise e discussão dos resultados obtidos entre os diferentes métodos a fim apresentar qual a fundação é mais adequada.

A verificação da viabilidade técnica, o dimensionamento da fundação e a oportunidade de estudar e aplicar os aprendizados adquiridos durante o curso de engenharia civil sobre fundações, justificam este estudo de caso. Além do intuito de que este trabalho possa servir como um embasamento para futuros projetos de fundações profundas na região de Manhuaçu.

2 METODOLOGIA

O presente trabalho compreende um estudo de caso, utilizando um projeto de edificação real, com o objetivo de definir o tipo de fundação mais adequada. Foram analisados três tipos distintos de fundação profunda: estaca trado mecânico, estaca pré-moldada e hélice contínua, analisando as características de cada tipo como resistência, custos, execução e prazos para chegar ao melhor custo benefício.

A edificação em questão é o Edifício Platinum que está sendo construído na Rua São Simão, nº 29, no bairro Bom Pastor, no município de Manhuaçu. O edifício será composto por 2 torres de 11 andares cada, sendo uma comercial e uma residencial. No presente trabalho, foi analisada apenas a torre comercial que, após finalizada terá área liquida total de 2.55,81m² e serão 74 salas comerciais.

A pesquisa foi dividida em quatro partes, sendo elas (a) Levantamento das cargas solicitantes, (b) Investigação do solo, (c) Dimensionamento da fundação, (d) Levantamento dos custos de execução.

- (a) Levantamento das cargas solicitantes: A NBR 6120/1980 Cargas para o cálculo de estruturas de edificações, fixa as condições mínimas para a determinação dos valores das cargas que deverão ser consideradas no projeto de estrutura de edificações. Foram analisadas as cargas permanentes (g), que são constituídas pelo peso próprio da estrutura e todos os elementos fixos construtivos e instalações permanentes, as cargas acidentais (q), que atuam sobre a estrutura da edificação em função do seu uso, neste caso: pessoa, móveis e materiais diversos. Há também as cargas especiais, que são transitórias e de pequena duração, que decorrem de ações variáveis da natureza, como o vento. O estudo das cargas foi realizado através do software estrutural Eberick, fazendo a análise de todo o conjunto estrutural, cargas solicitantes e ações atuantes.
- (b) Investigação do solo: Através do ensaio SPT foi encontrada nos primeiros 5 metros uma argila siltosa mole, a seguir, um silte argiloso pouco arenoso, rijo a duro, no entanto, somente após 9 metros de profundidade, foi encontrado o silte arenoso, muito compacto, cor variegada com alteração de rocha, solo com a resistência necessária para receber as cargas transmitidas pela fundação. O nível da água se encontra a 2,95 metros de profundidade.
- (c) Dimensionamento da fundação: As fundações dos três tipos selecionados foram dimensionadas usando os métodos Aoki-Velloso Décourt-Quaresma por meio do programa Microsoft Excel;
- (d) Levantamento dos custos de execução: Para encontrar os custos de execução de cada um dos três tipos de estaca, foram calculados o tempo e o grau de dificuldade de execução, os insumos e a mão de obra. Em seguida foi feito o levantamento dos custos com empresas atuantes no mercado.

3 RESULTADOS E DISCUSSÃO

3.1 Resistência das Estacas

Após aplicação dos métodos Aoki-Velloso e Décourt-Quaresma, foram obtidos, utilizando planilhas de Excel, os dados apresentados nas tabelas, de 1 a 3, referentes as estacas trado mecânico, hélice contínua e estaca pré-moldada, respectivamente:

Para o cálculo da resistência da estaca tipo trado mecânico, foram considerados os seguintes dados: diâmetro de 40cm, fck do concreto de 30Mpa, coeficiente de segurança 2,0. A Tabela 1 apresenta os valores de resistência obtidos.

Tabela 1 - Resistência da Estaca Trado Mecânico pelos Métodos Aoki-Velloso e Décourt-Quaresma.

				Décourt-Quaresma							Aoki-Velloso						
Cota (m)	Prof . (m)	SPT	Solo	K (kN/m2)	qp (kN/m2)	Qp (kN)	qs (kN/m2)	Qs (kN)	Qtotal (kN)	Q/CS (kN)	K (kN/m2)	α (%)	Qp (kN)	Qa (kN)	Qtotal (kN)	Q/CS (kN)	Q calc. (kN)
559	0	-	Areia siltosa	400	0	0	10	0	0	0	800	2,0%	0	0	0	0	0
558	1	6	Areia siltosa	400	2400	302	30	38	170	85	800	2,0%	201	20	221	111	85
557	2	7	Areia siltosa	400	2800	352	33	80	216	108	800	2,0%	235	44	278	139	108
556	3	7	Areia siltosa	400	2800	352	33	121	237	118	800	2,0%	235	67	302	151	118
555	4	7	Areia siltosa	400	2800	352	33	163	258	129	800	2,0%	235	90	325	163	129
554	5	3	Areia siltosa	400	1200	151	20	188	170	85	800	2,0%	101	101	201	101	85
553	6	15	Silte argilo-arenoso	200	3000	377	60	264	398	199	250	3,0%	157	124	281	141	199
552	7	16	Silte argilo-arenoso	200	3200	402	63	343	465	232	250	3,0%	168	149	317	158	232
551	8	17	Silte argilo-arenoso	200	3400	427	67	427	534	267	250	3,0%	178	176	354	177	267
550	9	32	Silte arenoso	250	8000	1005	117	574	976	488	550	2,2%	737	257	994	497	488
549	10	-		0	0	0	10	586			0	0,0%	0	257	257		

Fonte: Autores

Para o cálculo da resistência da estaca tipo hélice contínua, foram considerados os mesmos dados utilizados no cálculo da estaca tipo trado mecânico: diâmetro de 40cm, fck do concreto de 30Mpa, coeficiente de segurança 2,0, conforme apresentado na Tabela 2.

Tabela 2 - Resistência da Estaca Hélice Contínua pelos Métodos Aoki-Velloso e Décourt-Quaresma.

				Décourt-Quaresma							Aoki-Velloso						
Cota (m)	Prof . (m)	SPT	Solo	K (kN/m2)	qp (kN/m2)	Qp (kN)	qs (kN/m2)	Qs (kN)	Qtotal (kN)	Q/CS (kN)	K (kN/m2)	α (%)	Qp (kN)	Qa (kN)	Qtotal (kN)	Q/CS (kN)	Q calc. (kN)
559	0	-	Areia siltosa	400	0	0	10	0	0	0	800	2,0%	0	0	0	0	0
558	1	6	Areia siltosa	400	2400	302	30	38	128	64	800	2,0%	201	32	233	116	64
557	2	7	Areia siltosa	400	2800	352	33	80	185	93	800	2,0%	235	69	303	152	93
556	3	7	Areia siltosa	400	2800	352	33	121	227	114	800	2,0%	235	106	340	170	114
555	4	7	Areia siltosa	400	2800	352	33	163	269	134	800	2,0%	235	143	377	189	134
554	5	3	Areia siltosa	400	1200	151	20	188	234	117	800	2,0%	101	159	259	130	117
553	6	15	Silte argilo-arenoso	200	3000	377	60	264	377	188	250	3,0%	157	196	353	177	188
552	7	16	Silte argilo-arenoso	200	3200	402	63	343	464	232	250	3,0%	168	236	403	202	232
551	8	17	Silte argilo-arenoso	200	3400	427	67	427	555	278	250	3,0%	178	278	456	228	278
550	9	32	Silte arenoso	250	8000	1005	117	574	875	438	550	2,2%	737	406	1143	572	438
549	10	-		0	0	0	10	586			0	0,0%	0	406	406		

Fonte: Autores

Já para o cálculo da resistência da estaca tipo Pré-moldada, hexagonal protendida, foram considerados os seguintes dados: diâmetro de 28cm, fck do concreto de 30Mpa, coeficiente de segurança 2,0 (Tabela 3).

Tabela 3 - Resistência da Estaca Pré-moldada (Hexagonal) pelos Métodos Aoki-Velloso e Décourt-Quaresma.

						Décourt	t-Quaresn	na			Aoki-Velloso						
Cota (m)	Prof . (m)	SPT	Solo	K (kN/m2)	qp (kN/m2)	Qp (kN)	qs (kN/m2)	Qs (kN)	Qtotal (kN)	Q/CS (kN)	K (kN/m2)	α (%)	Qp (kN)	Qa (kN)	Qtotal (kN)	Q/CS (kN)	Q calc. (kN)
559	0	-	Areia siltosa	400	0	0	10	0	0	0	800	2,0%	0	0	0	0	0
558	1	6	Areia siltosa	400	2400	148	30	26	174	64	800	2,0%	118	24	142	116	64
557	2	7	Areia siltosa	400	2800	172	33	56	228	93	800	2,0%	138	52	190	152	93
556	3	7	Areia siltosa	400	2800	172	33	85	257	114	800	2,0%	138	80	218	170	114
555	4	7	Areia siltosa	400	2800	172	33	114	287	134	800	2,0%	138	109	247	189	134
554	5	3	Areia siltosa	400	1200	74	20	132	206	117	800	2,0%	59	121	180	130	117
553	6	15	Silte argilo-arenoso	200	3000	185	60	185	369	188	250	3,0%	92	149	241	177	188
552	7	16	Silte argilo-arenoso	200	3200	197	63	240	437	232	250	3,0%	99	179	278	202	232
551	8	17	Silte argilo-arenoso	200	3400	209	67	299	508	278	250	3,0%	105	211	316	228	278
550	9	32	Silte arenoso	250	8000	493	117	402	894	438	550	2,2%	433	308	742	527	438
549	10	-		0	0	0	10	411			0	0,0%	0	308	308		

Fonte: Autores

Observa-se que os valores obtidos para a Estaca Hélice Contínua (Tabela 2) e para a Estaca Pré-Moldada (Tabela 3) foram semelhantes. Já para a Estava Trado Mecânico (Tabela 1) foram superiores se comparados com os tipos mencionados anteriormente.

4.2. Levantamento dos Custos

Após obtidas as resistências de cada estaca frente as cargas da superestrutura e a resistência do solo, foram levantados o peso do aço por meio da tabela de aço disponível no Site Engenharia, os valores do aço foram disponibilizados pela GERDAU e todo o material necessário e as horas de mão de obras necessárias à execução de cada tipo de estaca foram encontrados nos dados disponibilizados pelo SINAPI. Posteriormente foram pesquisados no mercado os custos de execução de cada tipo, como o detalhado nas Tabelas 4,5 e 6.

Para execução da Estaca Trado Mecânico (Tabela 4) foram considerados 6 itens especificados em escavação com diâmetro de Ø400mm, desmobilização, mão de obra (considerando armador e ajudante), concreto usinado de 30 Mpa, Aço CA-50 de 6.3 e 12.5, totalizando um valor de R\$ 72.028,32.

Tabela 4 – Custo de Execução da Estaca Escavada – Trado Mecânico.

Item	Especificações	Qtde	Valor Unitário	Valor total		
1	Escavação com diâmetro de Ø400mm –	960m	R\$25,00	R\$24.000,00		
	Trado			. ,		
2	Desmobilização	1	R\$600,00	R\$600,00		
3	Mão de obra (Armador + Ajudante)	2	R\$23,74hora	R\$1.899,20		
4	Concrete Usinado ECV - 20 Mna	131	220,00 + Taxa de	R\$31.440,00		
4	Concreto Usinado FCK = 30 Mpa	m³	Bomba	K\$51.440,00		
5	Aço CA-50 (6.3)	356	R\$10,04	R\$3.574,24		
6	Aço CA-50 (12.5)	288	R\$36,51	R\$10.514,88		

R\$72.028,32

Fonte do orçamento: KIK Fundações.

Para a execução da Estaca Hélice Contínua (Tabela 5) também foram considerados 6 itens, especificados em perfurações com diâmetro Ø400mm, desmobilização, mão de obra (armador e ajudante), Aço CA-50 de 6.3 e 12.5, e concreto usinado de 30 Mpa. Para esse tipo de estava o custo de execução orçado foi de R\$ 143.824,35.

Tabela 5 – Custo de Execução da Estaca Hélice Contínua.

Item	Especificações	Qtde	Valor Unitário (m)	Valor total
1	Perfurações com diâmetro de Ø400mm – Hélice Continua	1090m	R\$45,00	R\$49.050,00
2	Desmobilização	1	R\$15.000,00	R\$15.000,00
3	Mão de obra (Armador + Ajudante)	2	R\$23,74hora	R\$15.193,60
4	Aço CA-50 (6.3)	763 varas	R\$10,04	R\$7.660,52
5	Aço CA-50 (12.5)	573 varas	R\$36,51	R\$20.920,23
6	Concreto Usinado FCK = 30 Mpa	150m³	220,00 + Taxa de Bomba	R\$36.000,00

R\$143.824,35

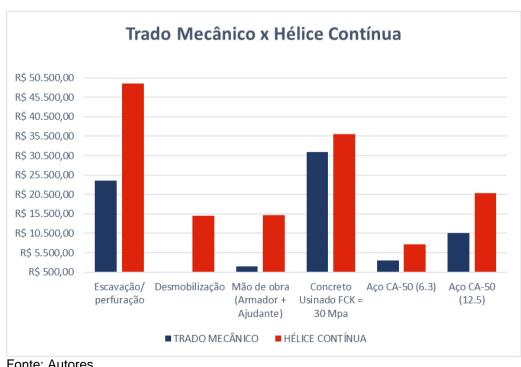
Fonte do orçamento: Iclosonda Fundações

Já para a execução da Estaca Pré-Moldada (Tabela 6) foram considerados 4 itens, especificados em cravação da estaca pré moldada de diâmetro Ø280mm, desmobilização, estacas e desmobilização por conjunto de equipamentos, totalizando um curso de R\$ 171.777,60.

Tabela 6 – Custos de Execução da Estaca Pré-Moldada (Hexagonal).

Item	Especificações	Qtde	Valor Unitário (m)	Valor total
1	Cravação com diâmetro de Ø28mm – Pré-Moldada	1120m	R\$37,40	R\$41.888,00
2	Desmobilização	1	R\$15.000,00	R\$15.000,00
3	Estacas	1120	R\$96,33	R\$107.889,60
4	Desmobilização por conjunto de equipamentos	Equipe	R\$7.000,00	R\$7.000,00

R\$171.777.60


Fonte do orçamento: CGL Fundações

Como pode ser analisado através das tabelas apresentadas, a Estaca Trado Mecânico tem seu custo de execução orçado em R\$ 72.028,32 (Tabela 4); já para a Estaca Hélice Contínua, o orcamento foi avaliado em R\$ 143.824,35, mais que o dobro da anterior. O custo para a utilização da Estaca Pré-Moldada ficou orçado em R\$ 171.777,60, aproximadamente duas e meia vezes o custo da Estava Trado Mecânico e 20% a mais que o custo da Estava Hélice Contínua.

O Gráfico 1 apresenta a comparação entre os custos de execução entre a Estaca Trado Mecânico (representado pela cor azul) e Estaca Hélice Contínua (representado pela cor vermelha), que são compostos dos mesmos itens: 'escavação/perfuração', 'desmobilização', 'mão de obra', 'Concreto Usinado Fck=30Mpa', 'Aço CA-50 (6.3)' e 'Aço CA-60 (12.5)'. Nota-se que a grande diferença de custos total (R\$71.796,03) é devida, principalmente à escavação/perfuração da estaca, desmobilização e mão de obra.

O custo do servico de perfuração da Estaca Hélice Contínua (R\$ 49.050,00) é o dobro da escavação da Estaca Trado Mecânico (R\$24.000,00). O item desmobilização de serviço da Estaca Hélice Contínua foi orçada em R\$15.000,00, 25 vezes maior que os R\$ 600,00 orçados para Estaca Trado Mecânico. A mão de obra da Estaca Hélice Contínua foi orçada em R\$ 15.193,60, enquanto que o custo desse serviço para a Estaca Trado Mecânico, ficou em R\$ 1.899,20, oito vezes mais. As diferenças de custo para os itens 'Concreto Usinado fck=30Mpa', 'Aço CA-50 (6.3)' e 'Aço CA-60 (12.5)' é referente a quantidade necessária em cada um deles para os diferentes tipos.

Gráfico 1 - Comparação entre o custo de execução entre Estaça Trado Mecânico e Estaça Hélice Contínua.

Fonte: Autores.

Como demonstrado anteriormente, o custo para a execução da Estaca Pré-Moldada é o maior quando comparado às demais. Tal fato deve-se, principalmente, o custo de aquisição desse tipo de estaca, que foi orçado em R\$ 107.889,60, que corresponde a aproximadamente 63% do custo total de sua execução.

Visto que todas os tipos de estacas discutidos são adequadas para utilização no Edificio Platinum, o fator econômico passa a ser decisivo na definição da melhor alternativa. Nesse sentido, a Estaca Trado Mecânico se destaca dentre as demais, uma vez que o custo da sua execução (R\$ 72.028,32) é metade tanto quando comparada à da Estaca Hélice Contínua (R\$ 143.824,35), quanto à Estaca Pré-Moldada (R\$ 171.777,60). É importante ressaltar que esses custos podem variar de acordo com a região onde a fundação será executada, devido às questões de logística e também a discponibilidade dos tipos de estacas ofertados nas proximidades.

4 CONCLUSÃO

Com base em tudo que foi exposto, a Estaca Trado Mecânico oferece o melhor custo benefício para a edificação objeto de estudo, principalmente pelo seu menor custo quando comparado às demais. Outro benefício desse tipo de estaca é que durante sua execução não ocorre nenhum tipo de vibração, evitando possíveis impactos ou danos nas construções vizinhas.

Como desvantagem, a Estava Trado mecânico não pode ser executada abaixo do nível de água, que no presente estudo de encontrava a aproximadamente 3,0m de profundidade. Nesse caso, é indicado injetar concreto à medida que o solo for sendo removido, de modo que a umidade do solo não influencie nas características do concreto.

Esse tipo de análise técnica e econômica é de suma importância para auxiliar na definição do tipo de fundação a ser utiliza na edificação em questão. Ressalta-se que para isso é necessário um estudo aprofundado das condições do solo, uma vez que suas características e propriedades são determinantes durante a análise de viabilidade técnica da fundação.

É importante ressaltar que os resultados e conclusões obtidas durante no presente trabalho são específicas para o Edifício Platinum, respeitando suas características. O presente estudo pode ser utilizado como fonte de pesquisa e referência para auxiliar no estudo de viabilidade de implantação de fundações, mas nunca como uma verdade absoluta. Cada projeto é único e deve haver um estudo minucioso de suas características, propriedades e necessidades que são específicas e determinantes para a definição de soluções construtivas.

5 REFERÊNCIAS

ABNT Associação Brasileira de Normas Técnicas, (1980) 5 p. NBR 6120/1980 **Cargas para o cálculo de estruturas de edificações**. Rio de Janeiro, RJ 1980 < http://rotaacessivel.com.br/files/200000332-9e3c79f36d/nbr6120.pdf > Acesso em 15 de julho de 2018.

ABNT Associação Brasileira de Normas Técnicas, (1986) 33 p. NBR 6122/2010 **Projeto e execução de fundações**. Rio de Janeiro, RJ 2010 https://docente.ifrn.edu.br/valtencirgomes/disciplinas/construcaodeedificios/nbr06122 -1996-projeto-e-execucao-de-fundacoes> Acesso em 28 de julho de 2018.

ABNT Associação Brasileira de Normas Técnicas, (1997) 17p. NBR 6484/2001 **Solo - Sondagens de simples reconhecimento com SPT - Método de ensaio.** Rio de Janeiro, RJ, 2001. Disponível em: http://www.ebah.c om.br/content/ABA AAe08kAJ/nbr-06484-2001-solo-sondagens-simples-reconhecimento-com-spt-meto do-ensaio> Acesso em 03 de agosto de 2018.

ABNT Associação Brasileira de Normas Técnicas, (1979) 3p. NBR 8036/1983 **Programação de sondagens de simples reconhecimento dos solos para fundações de edifícios**. Rio de Janeiro, RJ, 1983. Disponível em: < http://www.ebah.co m.br/content/ABAAAg2JwAF/nbr-8036-programacao-sondagenssimplesreconhecime nto-dos-solos-fundacoes-edifici> Acesso em 03 de setembro de 2018.

ANDRZEJEWSKI, Ivan Alberti. **Estudo e Dimensionamento de Fundação Profunda por Estacas tipo Raiz.** 125p / Trabalho de Graduação em Engenharia Civil — Universidade Federalde Santa Catarina — Florianópolis — SC — 2015. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/133799/TCC_IVAN_final_3. pdf?sequence=1&isAllowed=y>>. Acesso em 25 de agosto de 2018.

BUIATTI, Márcio de Carvalho, RODRIGUES, Paulo Vitor, BORGES, Sávio. **Estaca Tipo Trado Mecânico** / Trabalho de Graduação em Engenharia Civil – Faculdade ESAMC – Uberlândia – MG - 2015. Disponível em: < http://www.ebah.com.br/cont ent/ABAAAgyugAB/estaca-tipo-trado-mecanico> . Acesso em 12 de setembro de 2018.

FILHO, Edgar Pereira. **Metodologia – Estacas Escavadas – Trado Mecânico**.5p / Artigo – AP&L Geotecnia e Fundações – Montes Claros – MG. 2016. Disponível em: < http://www.apl.eng.br/artigos/2016-METODOLOGIA-ESTACA-ESCAVADA-TRADO -MECANICO.pdf> Acesso em 30 de agosto de 2018.

GARCIA, Andressa Faquineli. Cartografia geotécnica para a cidade de palmas/to: determinação das cotas de impenetrável e nível freático por meio de sondagem spt. 90p. Trabalho de Graduação em Engenharia Civil – Universidade Federal do Tocantins – Palmas – TO - 2017. Disponível em: . Acesso em 22 de outubro de 2018.

HACHICH, Waldemar, FALCONI Frederico F., SAES José Luiz, FROTA Régis G. Q., CARVALHO Celso S. e NIYAMA Sussumu. **FUNDAÇÕES – Teoria e Prática.** São Paulo: Pini, 1998. Disponível em: < http://www.ebah.co m.br/content/ABAAAhDe4AF /fundacoes-teoria-pratica>. Acesso em 07 de setembro de 2018.

JOPPERT Jr., Ivan. Fundações e Contenções de Edifícios - Qualidade Total na Gestão do Projeto e Execução. 222p, 1ª edição. Referência:02.08.1335. Formato: 21 x 28 cm. ISBN: 978-85-7266-177-5. Editora PINI 2007.

SENA, Leonardo. **Estudo de caso sobre projeto de fundações por sapatas e por estacas** 118p / Trabalho de Graduação em Engenharia Civil — Universidade Federal de Santa Catarina - Florianópolis, SC, 2016. Disponível em: < https://repositorio.ufsc.br/bitstream/handle/123456789/174031/TCC%20-%20Leonardo%20Sena.pdf?sequence=1 > Acesso em 15 de agosto de 2018.

SETE Engenharia. - Sequência executiva de uma estaca tipo hélice contínua: perfuração, concretagem e instalação da armadura. Disponível em http://sete.eng.br/estacas-elice-ontinua-onitoradas-1024-servico-10880. Acesso em: 10 de setembro de 2018.