NÚMERO DE RAMOS ORTOTRÓPICOS NO CAFEEIRO ARÁBICA: CONTEÚDO DE NITROGÊNIO FOLIAR E SUAS RELAÇÕES COM FOLHAS E FRUTOS

Tafarel Victor Colodetti¹, Rodrigo Amaro de Salles², Renan Baptista Jordaim², Inês Viana de Souza³, Lucas Sartori³, Marcelo Antonio Tomaz⁴

¹Doutor em Produção Vegetal, Programa de Pós-Graduação em Produção Vegetal do CCAE-UFES, Alegre-ES, tafarelcolodetti@hotmail.com.

²Mestre em Produção Vegetal, Programa de Pós-Graduação em Produção Vegetal do CCAE-UFES, Alegre-ES, rodrigoamarodesalles@gmail.com, renan_jordaim@hotmail.com.

³Graduando em Agronomia, CCAE-UFES, Alegre-ES, ines.viana.18@gmail.com, lucasksartori@gmail.com.

⁴Doutor em Fitotecnia, Professor do Departamento de Agronomia do CCAE-UFES, Alegre-ES, tomazamarcelo@yahoo.com.br.

Resumo: Objetivou-se estudar o conteúdo de nitrogênio foliar e suas relações com aspectos vegetativo e produtivo de plantas de cafeeiro Arábica manejadas com diferentes números de ramos ortotrópicos. O experimento foi conduzido no município de Santa Teresa-ES, altitude de 740 m. Em novembro de 2012, a lavoura foi recepada e as brotações que surgiram foram conduzidas para promover o estabelecimento de três tratamentos referentes ao número de ramos ortotrópicos: um, dois ou três ramos por planta. O experimento seguiu delineamento em blocos casualizados, com os três tratamentos e oito repetições. As avaliações foram realizadas na fase fenológica de maturação dos frutos na safra de 2015, onde se contabilizou o conteúdo de N foliar nos ramos plagiotrópicos, o conteúdo de N por folha, a área foliar por unidade de massa de N, a quantidade de frutos e a massa seca de frutos por mg de N, bem como o conteúdo total de N nas folhas da planta. Observou-se que plantas de cafeeiro Arábica manejadas com dois e três ramos ortotrópicos alocaram maiores quantidades de N foliar do que plantas com um ramo, tendo em vista os maiores conteúdos totais de N nas folhas da planta. No manejo com um ramo ortotrópico houve menor formação de área foliar por mg de N das folhas, bem como um menor conteúdo de N foliar para a formação de uma unidade de fruto ou uma grama de massa seca de frutos.

Palavras-chave: Coffea arabica; Manejo de plantas; Poda; Nutrição mineral.

Área do Conhecimento: Ciências Agrárias.

NUMBER OF ORTHOTROPIC STEMS IN ARABICA COFFEE: FOLIAR NITROGEN CONTENTS AND ITS RELATIONS WITH LEAVES AND FRUITS

Abstract: The objective of this study was to analyze the leaf nitrogen content and its relations with vegetative and productive aspects of Arabica coffee plants managed with different numbers of orthotropic stems. The experiment was carried out in the municipality of Santa Teresa-ES, at an altitude of 740 m. In November 2012, the crop were pruned and the new emerged sprouts were conducted to promote the establishment of three treatments regarding the number of orthotropic stems: one, two, or three stems per plant. The experiment followed a randomized block design, with three treatments and eight replications. The evaluations were carried out during the phenological stage of fruit maturation in the 2015 harvest. The content of leaf N in the plagiotropic branches, the content of N per leaf, the leaf area per mg of N, the quantity of fruits and the dry mass of fruits per mg of N, as well as the total content of N in the leaves of the plant were evaluated. It was observed that Arabica coffee plants managed with two and three orthotropic stems allocated higher amounts of N than plants with one stem, considering the higher total N content in the leaves of the plant. In the management with one orthotropic stem, there was less formation of leaf area per mg of leaf N, as well as a lower content of leaf N for the formation of a fruit unit or a gram of dry fruit mass.

Keywords: Coffea arabica; Plant management; Pruning; Mineral nutrition.

INTRODUÇÃO

Caracterizada como uma atividade fundamental para o desenvolvimento social e econômico do Brasil, a cafeicultura apresenta destaque como atividade agrícola, principalmente em termos de uso de mão de obra, fixação do homem no campo, geração de empregos, divisas externas e arrecadação de impostos, onde a trajetória da cafeicultura se mescla com a própria história do país (FERRÃO et al., 2008).

Para a safra de 2019, cerca de 27,4% da produção nacional de café foi proveniente do Estado do Espírito Santo, caracterizando-o como o segundo maior produtor de café do Brasil, com 13,5 milhões de sacas beneficiadas (CONAB, 2020). Desse montante de café produzido no Estado, cerca de 22,2% foram oriundos da produção do cafeeiro Arábica (*Coffea arabica* L.), resultado de uma produtividade média estadual de 19,74 sacas ha⁻¹, cerca de 3,92 sacas ha⁻¹ a menos que a média nacional dessa espécie (23,66 sacas ha⁻¹) para a referida safra (CONAB, 2020). Nesse cenário, são fundamentais os estudos que visam melhorar os índices produtivos do cafeeiro Arábica sem que haja, necessariamente, aumento das áreas de produção.

Atualmente, têm sido crescentes os estudos sobre o novo maneio de poda programada de ciclo para o cafeeiro Arábica, que tem como foco aumentar o número de ramos ortotrópicos conduzidos por planta, efetuar anualmente a retirada de brotações e de ramos plagiotrópicos exauridos da safra anterior e promover a substituição cíclica dos ramos ortotrópicos ao final de cada ciclo de poda (VERDIN FILHO et al., 2008). Resultados promissores em produtividade e desenvolvimento das plantas têm sido obtidos. Um trabalho conduzido ao longo de cinco safras e com manejo de um a quatro ramos ortotrópicos por planta de cafeeiro Arábica, mostrou que o manejo com três ramos por planta expressou a maior média, sendo de 46,2 sacas ha-1 (VERDIN FILHO et al., 2016). Outro estudo com o mesmo manejo, porém com quatro safras, demonstrou média de 45,3 sacas ha-1 para o manejo com três ramos ortotrópicos (BAITELLE et al., 2019). Um trabalho mostrou responsividade do manejo do número de ramos ortotrópicos já na primeira safra após a recepa, onde se obteve 54,3 sacas ha-1 com dois ramos verticais por planta, quando comparado aos manejos com um e três ramos (COLODETTI et al., 2018). Por último, um estudo recente ressaltou a capacidade de respostas biométricas, fotossintéticas e produtivas do cafeeiro Arábica cultivo em região de baixa altitude, onde o manejo de poda associado ao aumento do número de ramos ortotrópicos foi capaz de favorecer os aspectos vegetativos, fisiológicos e produtivos, mesmo em uma região inapta ao cultivo de Arábica, resultando na produção de 80,8 sacas ha-1 na segunda safra e com quatro ramos verticais por planta (COLODETTI et al., 2020).

Considerações importantes devem ser levantadas com relação aos efeitos da poda no cafeeiro, visto a capacidade de alterar a relação fonte-dreno de carboidratos nas plantas, uma vez que atua de forma direta na renovação do dossel e, portanto, no aparato fotossintético (PEREIRA et al., 2013). Se empregada de forma correta, a poda favorecerá a formação de novos ramos e folhas, que atuarão diretamente no metabolismo fisiológico; estabelecerá controle do crescimento vegetativo, assim como aumentará a luminosidade e arejamento no interior do dossel (SARTORI et al., 2007).

Associado ao manejo de poda e condução das plantas, é fundamental o conhecimento sobre os aspectos nutricionais e suas relações com o crescimento vegetativo e produtivo. De modo especial, o nitrogênio (N) apresenta influência na taxa de emergência, de expansão e de duração da área foliar de espécies vegetais, atuando diretamente na taxa fotossintética e na produção de biomassa (SINCLAIR; HORIE, 1989; UHART; ANDRADE, 1995). A deficiência desse nutriente provoca a degradação da molécula de clorofila, o que interfere negativamente na captação e utilização da luz solar na fotossíntese, comprometendo o crescimento e desenvolvimento de plantas (SILVA et al., 2012). Dentre os nutrientes aplicados em maiores quantidades pelas adubações, o N se destaca como um dos nutrientes essenciais mais requeridos para o desenvolvimento pleno do cafeeiro e sua deficiência causa limitação do crescimento e da produção dessas plantas (VAAST et al., 1998; MALAVOLTA, 1986).

Devido a sua elevada mobilidade no solo, são comuns perdas elevadas de N por lixiviação ou volatilização nas condições edafoclimáticas brasileiras. Com isso, destaca-se este elemento nos programas de adubação do cafeeiro, pois é altamente requerido no metabolismo vegetal, atuando no crescimento vegetativo e processo fotossintético (MALAVOLTA, 1993; SAKIYAMA et al., 2015; TAIZ et al., 2017). Nesse contexto, objetivou-se estudar o conteúdo de nitrogênio foliar e suas relações com aspectos vegetativos e produtivos de plantas de cafeeiro Arábica manejadas com diferentes números de ramos ortotrópicos.

METODOLOGIA

O experimento foi realizado no município de Santa Teresa-ES, região Serrana do Estado do Espírito Santo, nas coordenadas geográficas 19°49'05.7" S e 40°45'55.6" O. A altitude do local é de 740 m e o solo classificado como Latossolo Vermelho-Amarelo distrófico, com topografia ondulado-acidentada. Na classificação Köppen, o clima da região é do tipo Cwa (subtropical de inverno seco), com precipitação acumulada média anual de 1.282 mm e temperatura média anual de 21,1 °C. A região do estudo encontra-se na zona apta para o cultivo do cafeeiro Arábica (PEZZOPANE et al., 2012), com produtividade média regional de 26,70 sacas ha-1(INCAPER, 2020).

O espaçamento utilizado foi de 2,5 x 1,0 m, que permitiu uma população de 4000 plantas por hectare, considerado cultivo adensado (THOMAZIELLO; PEREIRA, 2008). O cultivar utilizado foi o Catuaí Vermelho IAC44, amplamente empregado em lavouras cafeeiras no Estado do Espírito Santo. A lavoura onde o experimento foi implantado apresentava oito anos de idade quando passou por uma poda com recepa baixa, em novembro de 2012. Com a recepa, as plantas iniciaram novas brotações que foram conduzidas até apresentarem, em média, 20 cm de altura, momento em que efetuou-se a desbrota e permitiu-se a manutenção de apenas um, dois ou três brotos por planta. Esses diferentes números de brotações por planta consistiram nos diferentes tratamentos.

Durante o período experimental, que transcorreu entre a recepa (novembro de 2012) e a colheita (junho de 2015), o manejo da adubação foi realizado de acordo com as necessidades e recomendações para a cultura do café Arábica no Estado do Espírito Santo (PREZOTTI et al., 2007), assim como os tratos fitossanitários e as práticas culturais (REIS; CUNHA, 2010). O experimento foi conduzido em condição de sequeiro.

O experimento seguiu delineamento em blocos casualizados, com três tratamentos e oito repetições. Os tratamentos consistiram em um, dois ou três ramos ortotrópicos por planta, obtidos da brotação após a recepa. A parcela experimental foi composta por três plantas úteis, delimitadas por uma planta de bordadura em cada extremidade.

As avaliações ocorreram durante o primeiro ciclo produtivo do cafeeiro após a recepa (safra 2015). As avaliações foram realizadas na fase fenológica de maturação dos frutos. De cada uma das três plantas úteis da parcela, dois ramos plagiotrópicos de primeira produção foram identificados para realização das avaliações. Quando os frutos de café das plantas atingiram o estádio de "cereja", os ramos plagiotrópicos marcados foram coletados. Em cada ramo, mensurou-se o número total de frutos, o número total de folhas e a área foliar. O número de frutos e de folhas dos ramos plagiotrópicos foram obtidos por contagem direta. Já a área foliar (cm²) foi obtida ao passar todas as folhas de cada ramo no integrador de área foliar "Area meter" (modelo 3100, LiCor). Após estas análises, todos os materiais foram secos separadamente em estufa de circulação forçada de ar a 65 °C ± 2 °C, até massa constate, e posteriormente pesados em balança analítica (precisão de 0,0001 g) para obtenção da massa seca de folhas (g), massa seca de frutos (g) e massa seca total do ramo plagiotrópico (g).

Utilizou-se das amostras de massa seca de folhas para a determinação do teor foliar de nitrogênio (N; g kg⁻¹), por meio de digestão sulfúrica e de acordo com a metodologia descrita pela Embrapa (2009).

Com base no teor foliar de N e na massa seca de folhas dos ramos plagiotrópicos, estabeleceuse o conteúdo de N das folhas dos ramos plagiotrópicos (CN; mg). Ao dividir o CN pelo número de folhas dos ramos plagiotrópicos, encontrou-se o conteúdo de N por folha (CNF; mg folha-¹). A relação entre a área foliar do ramo plagiotrópico e o CN levou à obtenção da área foliar por mg de N (AFN; cm² mg-¹). Também ao relacionar o número ou a massa seca de frutos do ramo plagiotrópico pelo CN, obteve-se a quantidade de frutos (FRN; unidade mg-¹) e a massa seca de frutos (MSN; g mg-¹) por mg de N. Por fim, ao multiplicar o CNF pelo número total médio de folhas da planta (estimado pela multiplicação entre número de folhas dos ramos plagiotrópicos marcados e a contagem direta do número de ramos plagiotrópicos da planta), obteve-se o conteúdo total de N nas folhas da planta (CTN; g planta-¹).

Os dados foram submetidos à análise de variância, a 5% de probabilidade e, na presença de diferenças significativas, foi empregado o teste de Tukey para a comparação das médias, também a 5% de probabilidade. A análise dos dados foi realizada com o programa de análise estatística "SISVAR" (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

Foram observadas diferenças significativas (p≤0,05) para a maioria das relações entre o conteúdo de nitrogênio das folhas e aspectos vegetativos e produtivos do cafeeiro Arábica, decorrentes

da condução das plantas com diferentes números de ramos ortotrópicos (Tabela 1). Apenas para o conteúdo de nitrogênio de cada folha (CNF) não se observou efeito significativo dos tratamentos (Tabela 1).

Tabela 1 – Resumo da análise de variância para as relações entre o conteúdo de nitrogênio nas folhas e os aspectos vegetativos e produtivos de plantas de cafeeiro Arábica conduzidas com diferentes números de ramos ortotrópicos (Catuaí Vermelho IAC44, Santa Teresa-ES, safra 2015).

FV	Quadrado Médio		
	CN	CNF	AFN
Bloco	1295,1836*	3,0852 ^{ns}	0,2494 ^{ns}
Tratamento	3980,9191*	1,2205 ^{ns}	0,8714*
Resíduo	289,0796	1,9988	0,2216
CV (%)	10,30	13,43	11,38
Média geral	165,05	10,52	4,14
FV	Quadrado Médio		
	FRN	MSN	CTN
Bloco	0,0023 ^{ns}	0,0010 ^{ns}	13,2253 ^{ns}
Tratamento	0,1080*	0,0115*	748,4607*
Resíduo	0,0043	0,0006	13,4370
CV (%)	13,54	11,92	18,49
Média geral	0,48	0,21	19,82

*significativo e ns não significativo, respectivamente, pelo teste F em nível de 5% de probabilidade. FV: fonte de variação. Conteúdo de nitrogênio das folhas do ramo plagiotrópico (CN; mg), conteúdo de nitrogênio da folha (CNF; mg folha-1), área foliar por mg de nitrogênio (AFN; cm² mg-1), quantidade de frutos por mg de nitrogênio (FRN; unidade mg-1), massa seca de frutos por mg de nitrogênio (MSN; g mg-1), conteúdo de nitrogênio nas folhas da planta (CTN; g planta-1).

Notou-se maior conteúdo de N nas folhas de ramos plagiotrópicos (CN) de plantas manejadas com dois ramos ortotrópicos, e menores conteúdos em função do manejo com um ou três ramos verticais (Figura 1A). Certamente esses resultados foram observados devido à maior quantidade de folhas (e, consequentemente, maior massa seca foliar) nos ramos plagiotrópicos de plantas com dois ramos verticais, visto que o conteúdo de N em cada folha (CNF) não variou em função do número de ramos ortotrópicos por planta (Figura 1B).

Ao analisar a área foliar formada por mg de N das folhas dos ramos plagiotrópicos (AFN), notouse a maior média em função do manejo com três ramos ortotrópicos, enquanto menor média foi observada para o manejo com um ramo (Figura 1C). A média observada para o manejo com dois ramos verticais foi estatisticamente semelhante às médias dos manejos com um e três ramos (Figura 1C). É possível que a formação de maior AFN no manejo com três ramos esteja atrelada a um provável processo de autossombreamento, oriundo do adensamento de ramos verticais na própria planta, conforme inferido por Colodetti et al. (2018) ao estudarem a arquitetura de copa do cafeeiro Arábica manejo com diferentes números de ramos ortotrópicos. Em contrapartida, a menor média de AFN no manejo com um ramo pode estar relacionada com a destinação preferencial de nutrientes e metabólicos para os drenos prioritários que são os frutos (AMARAL et al., 2001), e com um possível exaurimento das estruturas fonte de fotoassimilados (DaMATTA, 2004; DaMATTA et al., 2008; CHAVES et al., 2012), visto que já foi relatada menor área foliar e maior quantidade de frutos por ramo plagiotrópico em plantas de cafeeiro Arábica manejadas com um ramo vertical, porém, com a menor produção de café beneficiado por hectare (COLODETTI et al., 2018).

Essa constatação pode ser reforçada nos resultados de número de frutos produzidos por mg de N nas folhas (FRN) e massa seca de frutos do ramo por mg de N foliar (MSN), onde as maiores médias foram obtidas em plantas de cafeeiro Arábica manejadas com um ramo ortotrópico, enquanto menores médias foram observadas nos manejos com dois e três ramos (Figura 1D e 1E). Nessas condições, o manejo com um ramo ortotrópico apresentou menor quantidade disponível de N foliar para a formação de uma unidade ou uma grama de frutos, visto que a FRN e a MSN foram maiores. Esses resultados ajudam a embasar a hipótese de maior exaurimento das estruturas fonte de fotoassimilados de plantas de cafeeiro com apenas um ramo ortotrópico.

Ao analisar o conteúdo de N total das folhas da planta (CTN) de cafeeiro Arábica, notou-se as maiores médias em função dos manejos com dois e três ramos ortotrópicos, enquanto a menor média foi obtida no manejo com um ramo (Figura 1F). Esses resultados possibilitam inferir que as plantas de cafeeiro Arábica manejadas com mais de um ramo ortotrópico apresentaram maior capacidade de exploração e aquisição de nitrogênio do solo, visto que dispuseram dos maiores conteúdos de N nas

folhas para uma condição na qual a adubação foi a mesma, independentemente do número de ramos mantidos nas plantas. É possível que o aumento no número de ramos verticais por planta tenha resultado na formação de um dossel maior e, consequentemente, um sistema radicular mais desenvolvido e expandido, capacitado a explorar um maior volume de solo, o que pode ter facilitado a obtenção mais efetiva de água e nutrientes, conforme embasado em Mota et al. (2006), Alves et al. (2011), Pereira et al. (2011) e Ronchi et al. (2015), e inferido por Colodetti et al. (2018) ao estudarem a arquitetura de copa do cafeeiro Arábica manejo com diferentes números de ramos ortotrópicos.

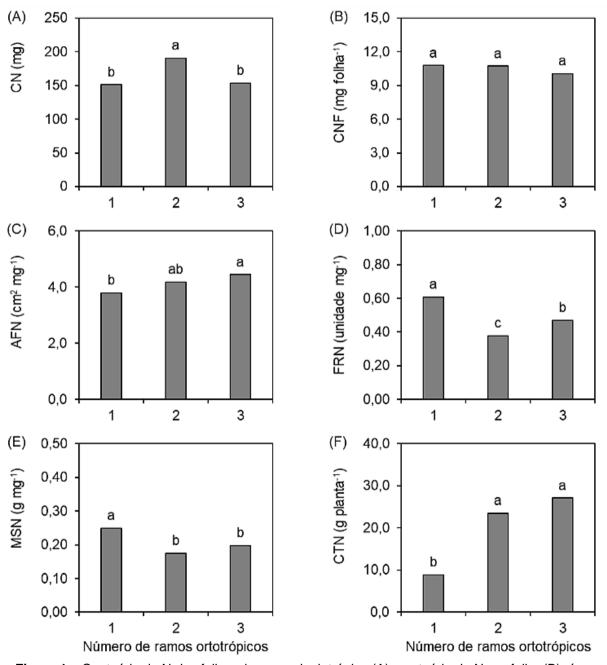


Figura 1 – Conteúdo de N das folhas do ramo plagiotrópico (A), conteúdo de N por folha (B), área foliar por mg de N das folhas (C), quantidade de frutos por mg de N das folhas (D), massa seca de frutos por mg de N das folhas (E) e conteúdo de N nas folhas das plantas (F) de cafeeiro Arábica conduzidos com diferentes números de ramos ortotrópicos por planta (Catuaí Vermelho IAC44, Santa Teresa-ES, safra 2015). Médias seguidas pela mesma letra minúscula na comparação entre as barras, não diferem entre si pelo teste de Tukey a 5% de significância.

Interesse crescente tem sido disponibilizado para o estudo do cafeeiro Arábica manejado com

diferentes sistemas de poda e números de ramos ortotrópicos, onde resultados promissores foram alcançados na recuperação de plantas depauperadas e na produtividade média (cinco safras) do cafeeiro, quando conduzidos com três ramos ortotrópicos e com a retirada dos ramos plagiotrópicos que já haviam produzido em mais de 70% de suas rosetas (VERDIN FILHO et al., 2016). Outro estudo demonstrou que a condução do cafeeiro Arábica com dois ramos ortotrópicos possibilitou a maior produção de café beneficiado por hectare e aumentou o percentual de grãos graúdos já na primeira safra produtiva após a recepa, além de favorecer o aumento da área e do volume de copa, da densidade de enfolhamento e da área foliar dos ramos plagiotrópicos (COLODETTI et al., 2018). Além desses resultados, um estudo demonstrou que o aumento do número de ramos ortotrópicos (quatro ramos) e a retirada dos plagiotrópicos exauridos em plantas de cafeeiro Arábica, atuou como estratégia para o cultivo dessa espécie em região de baixa altitude (zoneada como inapta), proporcionando a obtenção de maior número de ramos plagiotrópicos por planta, maior densidade de enfolhamento, maior razão de massa foliar do ramo plagiotrópico, maior relação folha:fruto, maior assimilação líquida de CO₂, maior produção de grãos beneficiados por planta, maior proporção de grãos "graúdos" e, possivelmente, a desaceleração do depauperação dos ramos (COLODETTI et al., 2020).

CONCLUSÕES

O manejo do número de ramos ortotrópicos do cafeeiro Arábica altera o conteúdo de nitrogênio foliar total das plantas, mesmo que o conteúdo de nitrogênio unitário da folha não seja modificado.

Plantas de cafeeiro Arábica manejadas com dois e três ramos ortotrópicos alocam maiores quantidades de nitrogênio do que plantas com um ramo, tendo em vista os maiores conteúdos de nitrogênio nas folhas da planta.

No manejo de plantas de cafeeiro Arábica com um ramo ortotrópico há menor formação de área foliar por miligrama de nitrogênio das folhas, bem como um menor conteúdo de nitrogênio foliar para a formação de uma unidade de fruto ou uma grama de massa seca de frutos.

REFERÊNCIAS

ALVES, J.D.; PAGLIS, C.M.; LIVRAMENTO, D.E.; LINHARES, S.S.D.; BECKER, F.B.; MESQUITA, A.C. Source-sink manipulations in *Coffea arabica* L. and its effect on growth of shoots and root system. **Ciência e Agrotecnologia**, v. 35, p. 956-964, 2011.

AMARAL, J.A.T.; DaMATTA, F.M.; RENA, A.B. Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and nitrate reductase activity. **Brazilian Journal of Plant Physiology**, v. 13, n. 1, p. 66-74, 2001.

BAITELLE, D.C.; VERDIN FILHO, A.C.; FREITAS, S.J.; MIRANDA, G.B.; VIEIRA, H.D.; VIEIRA, K.M. Cycle pruning programmed on the grain yield of Arabica coffee. **Ciência e Agrotecnologia**, v. 43, p. e014419, 2019.

CHAVES, A.R.M.; MARTINS, S.C.; BATISTA, K.D.; CELIN, E.F.; DaMATTA, F.M. Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. **Environmental and Experimental Botany**, v. 77, p. 207-218, 2012.

COLODETTI, T.V.; TOMAZ, M.A.; RODRIGUES, W.N.; VERDIN FILHO, A.C.; CAVATTE, P.C.; REIS, E.F. Arquitetura da copa do cafeeiro Arábica conduzido com diferentes números de ramos ortotrópicos. **Revista Ceres**, v. 65, n. 5, p. 415-423, 2018.

COLODETTI, T.V.; RODRIGUES, W.N.; CAVATTE, P.C.; REIS, E.F.; VERDIN FILHO, A.C.; BRINATE, S.V.B.; MARTINS, L.D.; CHRISTO, B.F.; ANDRADE JUNIOR, S.; TOMAZ, M.A. Managing the number of orthotropic stems in *Coffea arabica* as strategy for cultivation at low-altitude regions. **Australian Journal of Crop Science**, v. 14, p. 447-454, 2020.

COMPANHIA NACIONAL DE ABASTECIMENTO – CONAB. **Acompanhamento da safra brasileira**: café. Brasília: Conab, 2020. Disponível em: http://www.conab.gov.br. Acesso em: 14 ago. 2020. 58p.

DaMATTA F.M. Ecophysiological constraints on the production of shaded and unshaded coffee: a

review. Field Crops Research, v. 86, p. 99-114, 2004.

DaMATTA, F.M.; CUNHA, R.L.; ANTUNES, W.C.; MARTINS, S.C.V.; ARAUJO, W.L.; FERNIE, A.R.; MORAES, G.A.B.K. In field grown coffee trees source-sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. **New Phytologist**, v. 178, n. 2, p. 348-357, 2008.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. **Manual de análise química dos solos, plantas e fertilizantes**. 2. ed. Brasília: Embrapa, 2009. 627p.

FERRÃO, R.G.; FORNAZIER, M.J.; FERRÃO, M.A.G.; PREZOTTI, L.C.; FONSECA, A.F.A.; ALIXANDRE, F.T.; FERRÃO, L.F.V. Estado da arte da cafeicultura no Espírito Santo. In: TOMAZ, M.A.; AMARAL, J.F.T.; JESUS JUNIOR, W.C.; PEZZOPANE, J.R.M. **Seminário para a sustentabilidade da cafeicultura**. Alegre: UFES/CCA, 2008. p. 29-48.

FERREIRA, D.F. SISVAR: A Computer statistical Analysis System. **Ciência e Agrotecnologia**, v. 35, p. 1039-1042, 2011.

INSTITUTO CAPIXABA DE PESQUISA, ASSISTÊNCIA TÉCNICA E EXTENSÃO RURAL – INCAPER. **Cafeicultura**: café Arábica. 2020. Disponível em: https://incaper.es.gov.br/cafeicultura-arabica Acesso em: 14 ago. 2020.

MALAVOLTA, E. **Nutrição mineral e adubação do cafeeiro**. São Paulo: Agronômica Ceres, 1993. 210p.

MALAVOLTA, E. Nutrição, adubação e calagem para o cafeeiro. In: RENA, A.B.; MALAVOLTA, E.; ROCHA, M.; YAMADA, T. **Cultura do cafeeiro**: fatores que afetam a produtividade. Piracicaba: Potafos, 1986. p. 136-274.

MOTA, A.C.V.; NICK, J.A.; YORINORI, G.T.; SERRAT, B.M. Distribuição horizontal e vertical da fertilidade do solo e das raízes de cafeeiro (*Coffea arabica* L.) cultivar Catuaí. **Acta Scientiarum. Agronomy**, v. 28, p. 455-463, 2006.

PEREIRA, S.P.; BALIZA, D.P.; SANTOS, M.O.; ALVES, J.D.; GUIMARÃES, R.J. Influência do espaçamento de cultivo em duas épocas de poda nos teores caulinares de carboidratos em cafeeiros. **Coffee Science**, v. 8, n. 4, p. 460-468, 2013.

PEREIRA, S.P.; BARTHOLO, G.F.; BALIZA, D.P.; SOBREIRA, F.M.; GUIMARÃES, R.J. Crescimento, produtividade e bienalidade do cafeeiro em função do espaçamento de cultivo. **Pesquisa Agropecuária Brasileira**, v. 46, p. 152-160, 2011.

PEZZOPANE, J.E.M.; CASTRO, F.S.; PEZZOPANE, J.R.M.; CECÍLIO, R.A. **Agrometeorologia**: aplicações para o Espírito Santo. Alegre: CAUFES, 2012. 174p.

PREZOTTI, L.C.; GOMES, J.A.; DADALTO, G.G.; OLIVEIRA, J.A. **Manual de recomendação de calagem e adubação para o Estado do Espírito Santo**: 5ª aproximação. Vitória: SEEA/INCAPER/CEDAGRO, 2007. 305p.

REIS, P.R.; CUNHA, R.L. Café Arábica: do plantio à colheita. Lavras: U.R. EPAMIG SM, 2010. 896p.

RONCHI, C.P.; SOUSA JÚNIOR, J.M.; AMEIDA, W.L.; SOUZA, D.S.; SILVA, N.O.; OLIVEIRA, L.B.; GUERRA, A.M.N.M.; FERREIRA, P.A. Morfologia radicular de cultivares de café Arábica submetidas a diferentes arranjos espaciais. **Pesquisa Agropecuária Brasileira**, v. 50, n. 3, p. 187-195, 2015.

SAKIYAMA, N.S.; MARTINEZ, H.E.P.; TOMAZ, M.A.; BORÉM, A. **Café Arábica**: do plantio a colheita. Viçosa: UFV, 2015. 316p.

SARTORI, I.A.; KOLLER, O.C.; THEISEN, S.; SOUZA, P.V.D.; BENDER, R.J.; MARODIN, G.A.B. Efeito da poda, raleio de frutos e uso de fitorreguladores na produção de tangerineiras (*Citrus deliciosa*

Tenore) cv. Montenegrina. Revista Brasileira de Fruticultura, v. 29, n. 1, p. 5-10, 2007.

SILVA, T.R.B.; REIS, A.C.S.; MACIEL, C.D.G. Relationship between chlorophyll meter readings and total N in crambe leaves as affected by nitrogen topdressing. **Industrial Crops and Products**, v. 39, p. 135-138, 2012.

SINCLAIR, T.R.; HORIE, T. Leaf nitrogen, photosynthesis and crop radiation use efficiency: a review. **Crop Science**, v. 29, p. 90-98, 1989.

TAIZ, L.; ZEIGER, E.; MØLLER, I.A.; MURPHY, A. **Fisiologia e desenvolvimento vegetal**. 6. ed. Porto Alegre: Artmed, 2017. 858p.

THOMAZIELLO, R.A.; PEREIRA, S.P. **Poda e condução do cafeeiro Arábica**. Campinas: Instituto Agronômico, 2008. 39p. (Boletim Técnico IAC, 203).

UHART, A.S.; ANDRADE, F.H. Nitrogen deficiency in maize: I - Effects on crop, growth, development, dry matter partitioning and kernel sets. **Crop Science**, v. 35, p. 1376-1383, 1995.

VAAST, P.; ZASOSKI, R.J.; BLEDSOE, C.S. Effects of solution pH, temperature, nitrate/ammonium rates and inhibitors on ammonium and nitrate uptake by Arabica coffee in short term solution culture. **Journal of Plant Nutrition**, v. 21, n. 7, p. 1551-1564, 1998.

VERDIN FILHO, A.C.; SILVEIRA, J.S.M.; VOLPI, P.S.; FONSECA, A.F.A.; FERRÃO, M.A.G.; FERRÃO, R.G.; MARTINS, A.G.; LANI, J.A.; SILVEIRA, T.B.; COMÉRIO, F. **Poda programada de ciclo para o Café Conilon**. Vitória: DCM-Incaper, 2008. (Documento, 163).

VERDIN FILHO, A.C.; VOLPI, P.S.; FERRÃO, M.A.G.; FERRÃO, R.G.; MAURI, A.L.; FONSECA, A.F.A.; TRISTÃO, F.A.; ANDRADE JÚNIOR, S. New management technology for Arabica coffee: the cyclic pruning program for arabica coffee. **Coffee Science**, v. 11, n. 4, p. 475-483, 2016.