

T

SEMINÁRIO CIENTÍFICO DA FACIG

Sociedade, Ciência e Tecnologia

CONCRETO REFORÇADO COM FIBRAS: APERFEIÇOAMENTO DAS PROPRIEDADES FÍSICAS E MECÂNICAS

Roberto Vicente Silva de Abreu¹, Hellen Cristine Prata de Oliveira²

¹ Graduando em Engenharia Civil, Faculdade de Ciências Gerenciais de Manhuaçu, robertomutum2011@gmail.com

Resumo- O concreto é o um dos materiais mais utilizados na Construção Civil. Embora o concreto possua uma elevada resistência à compressão, a resistência à tração do mesmo é cerca de 10% da resistência à compressão. Assim, em regiões de tração de uma peça de concreto, ocorre fissuração da matriz e barras de aço são colocadas em tais áreas para resistirem aos esforços de tração. Mesmo com as barras de aço, o concreto continua a fissurar e tal processo pode comprometer a durabilidade da peça, uma vez que o aumento da fissuração com o tempo pode ocasionar a corrosão das barras de aço. Consequentemente, muitos estudos têm sido desenvolvidos na tentativa de sanar tal deficiência, sendo que uma das alternativas é a adição de fibras na mistura do concreto. As fibras agem na prevenção e no retardamento do efeito de fissuração da matriz de concreto, fazendo uma ponte para as tensões entre as faces da fissura e auxiliando o concreto a resistir melhor às tensões. Tais efeitos conferem ao concreto reforçado com fibras uma tendência mais dúctil que um concreto normal. Além do mais, o uso de certas fibras na composição do concreto ajuda a obter elevados ganhos quando se trata de certas propriedades físicas e mecânicas como resistência a compressão, tração, flexão, cargas de impacto e fadiga, além do aumento da dureza do elemento de concreto.

Palavras-chave: Concreto, Fibras, Propriedades física, Propriedades mecânicas, Fissuração.

Área do Conhecimento: Engenharias

INTRODUÇÃO

Hodiernamente, os materiais compósitos têm sido usados em grande escala desde que a combinação diferentes de materiais propriedades faz com que o produto final obtenha propriedades específicas que não alcançadas sem a junção dos mesmos. Um dos setores que mais utiliza materiais compósitos é a Construção Civil, sendo que o concreto é um dos materiais compósitos mais difundidos e com tecnologia estabelecida. O concreto apresenta inúmeras qualidades que o tornam um dos materiais mais utilizados na construção civil, como por exemplo, a elevada resistência que o mesmo atinge em um período de tempo pequeno e a facilidade de produção do mesmo quando comparada com a de outros materiais como o aço.

Se por um lado o concreto resiste muito bem às tensões de compressão, por outro lado sua resistência às tensões de tração representam apenas 10% da resistência à compressão. Além do mais, um dos fatores que contribuem para a baixa capacidade de resistir às tensões de tração é o processo de cura do concreto, sendo que fissuras de diversos tamanhos são geradas em

razão da perda de água pelo processo da exsudação. Além disso, fissuras são geradas pela ação de cargas diversas na estrutura e as mesmas diminuem a capacidade de resistir carregamentos por parte da peça estrutural (FIGUEIREDO, 2000; BARROS, 2009).

Diversos estudos têm sido criados para o desenvolvimento de técnicas que auxiliem na neutralização do problema de fissuração que o concreto apresenta, sendo que o uso de fibras no traço do concreto é uma das possíveis soluções. Consequentemente, diversas fibras têm sido adicionadas à dosagem do concreto para que se hajam melhorias relacionadas à ductilidade das peças de concreto e a capacidade das mesmas de resistir à tração. Dentre tais fibras, podem-se citar as fibras de aço, vidro, bambu, polipropileno e o bagaço da cana (FIGUEIREDO, 2000; SARAZ et al., 2007).

Desta forma, o presente artigo objetiva um estudo detalhado da literatura em geral com o intuito de explanar a utilização de diversas fibras na fabricação de concretos, bem como suas relações com as propriedades mecânicas e físicas.

² Doutora em Engenharia e Ciência dos Materiais, Universidade Federal de Ouro Preto, hcprata@yahoo.com.br

METODOLOGIA

O presente artigo foi obtido através de uma revisão bibliográfica detalhada dos principais trabalhos já realizados na área de tecnologia do concreto e da adição de fibras como um aditivo para o mesmo. Tais informações foram colocadas no presente artigo de forma organizada e sequencial. A sequência se inicia com a explicitação dos tipos de fibras e suas propriedades. Posteriormente, o estudo é direcionado para as tensões atuantes nas seções de concreto e as implicações das fibras para a minoração das fissuras e outras patologias. Por último, têm-se as propriedades do concreto reforçado com fibras já no estado endurecido.

RESULTADOS E DISCUSSÃO

Propriedades do concreto reforçado com fibras

Na Tabela 1 são mostrados os tipos de fibras mais utilizados e pesquisados para a adição no concreto. Adicionalmente, cada tipo de fibra possui variadas propriedades que são transferidas para o concreto a ser aditivado com as mesmas.

Tabela 1 – Propriedades físicas das fibras (adaptado de LÖFGREN, 2005).

Tipos de fibras	Resistência A tração [MPa]	Modulo de elasticidade [GPa]	Alongamento Último [%]
Metal			
Aco	200-2 600	195-210	0.5-5
Vidro			
E glass	2000-4000	72	3.0-4.8
AR glass	1500-3700	80	2.5-3.6
Sintético			
Acrílico	200-1000	14.6-19.6	7.5-50
Aramida	2000-3500	62-130	2.0-4.6
Carbono	1500-4000	200-800	1.3-1.8
Nylon	965	5.17	20.0
Poliéster	280-1200	10-18	10-50
Polietileno	4100-3000	80-150	2.9-4.1
Polipropileno (PP)	310-760	3.5-4.9	6-15.0
Polivinil	800-3600	20-80	4-12
Natural - orgânico			
Celulose (madeira)	300-2000	10-50	20
Coco	120-200	19-25	10-25
Bambo	350-50	33-40	-
Natural - inorgânico			
Asbestos	200-1800	164	2-3

Pela análise das informações contidas na tabela em questão, nota-se que as fibras de aço, que são as mais utilizadas no mercado, possuem elevados padrões de resistência à tração e módulo de elasticidade. As fibras de vidro apresentam elevada resistência à tração enquanto as fibras sintéticas possuem elevado valor de alongamento último (JANSSON, 2008).

Uma das principais vantagens relacionadas à aplicação das fibras nas estruturas de concreto se relaciona com a durabilidade. Uma vez que o concreto apresenta uma resistência à tração baixa em relação à resistência a compressão, a área tracionada de uma peça de concreto sofre efeito de fissuração ao ser carregada. Se houver uma minoração na quantidade e intensidade de fissuras e trincas, diminui-se o contato do aço no interior da peça estrutural com o ar e menor incidência de corrosão será evidenciada (BROWN et al., 2002).

Uma das maiores adversidades quanto ao uso das fibras se relaciona ao tempo e à tecnologia necessária para a fabricação do concreto reforçado com tais fibras, uma vez que as fibras devem ser dispersas na pasta de forma uniforme e a área ainda carece de técnicas mais apuradas de adição das fibras no concreto (BROWN *et al.*, 2002).

O concreto reforçado com fibras pode ser usado para múltiplos tipos de estruturas na construção civil, como por exemplo, lajes apoiadas no chão, fundações e muros. Para a utilização das mesmas em estruturas como vigas, colunas e lajes suspensas deve-se associar um sistema de protensão (LÖFGREN, 2005). Entretanto, o custo de um sistema de protensão é elevado e muitas vezes a relação custo/benefício de se optar pelo sistema fibras e protensão não se torna viável.

O concreto reforçado com fibras apresenta certas melhoras no que se refere ao crescimento de fissuras longitudinais quando submetido à compressão. A resistência à compressão não é alterada, mas a resistência à falha aumenta quando a proporção de fibras na pasta de concreto não ultrapassar 1% (LÖFGREN, 2005).

A Figura 1 mostra a comparação entre uma dosagem com baixo teor de fibras e outra mistura com elevado teor de fibras. É possível analisar que para um ensaio de tração, quanto maior o teor de fibras presentes na pasta de concreto, maior será a resistência a uma carga P para uma mesma deflexão. Segundo LÖFGREN (2005), a resistência à tração não é alterada com a adição de pequenas proporções de fibras, mas tais fibras influenciam diretamente no comportamento de fratura por tensão.

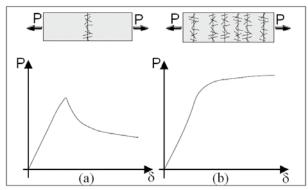


Figura 1 – Relação da dosagem de fibras com o diagrama tensão x deformação (SARZALEJO *et al.*, 2010)

Pela análise da Tabela 2, pode-se comprovar que as resistências à tração (ft) e à compressão (fc) não são alteradas significativamente com a adição de fibras. Entretanto, a energia de fratura (Gf) aumenta consideravelmente quando se adiciona fibras ao concreto.

Tabela 2 – Propriedades mecânicas de concretos diversos (Adaptado de LÖFGREN, 2005).

Material	fc [MPa]	ft [MPa]	E [GPa]	Gf (Nm/m2)
Pasta de cimento	10 – 25	2.0 – 10.0	10 – 30	10
Concreto normal	20 - 80	1.5 – 5.0	25 – 40	50 -150
Concreto de alta resistência	> 80	4.0 – 5.5	40 – 50	100 – 150
Concreto com adição de fibras	20 – 80	1.5 – 5.0	25 – 40	> 500

Segundo Tavares et al. (2006), a energia de fratura é a energia de deformação retida em uma partícula até a mesma alcançar a ruptura. Assim, os concretos com adição de fibras conseguem resistir mais aos esforços com um grau de fissuração menor. Consequentemente, uma peça de concreto armado com adição de fibras terá uma vida útil maior devido ao fato que o aço alojado na área tracionada não entra em contato direto com o ar ambiente e reações de oxidação não são evidenciadas. Como resultado, a aderência gerada pelo mecanismo concreto versus aço é mantida e a peça não sofre perdas consideráveis de resistência.

Comportamento do Concreto Reforçado com Fibras

O concreto em si apresenta elevada resistência à compressão, porém, a resistência à tração do mesmo é cerca de 10%. Assim, quando uma peça de concreto é submetida à flexão, zonas de tração e compressão são geradas na peça. Consequentemente, na zona tracionada inicia-se o aparecimento de fissuras uma vez que o concreto não tem elevada capacidade resistente para tal esforço (GÓIS, 2010).

Pela análise da Figura 2, pode-se notar que quando uma fissura se inicia no elemento de concreto, as tensões tendem a se concentrarem na ponta da mesma. No instante em que tal concentração de tensões ultrapassa a capacidade resistente à tração do concreto, a peça sofre fratura frágil, uma vez que tal processo ocorre de forma rápida e sem aviso prévio (BARROS, 2009).



Figura 2 – Concentração de tensões em concreto sem fibras (adaptado de BARROS, 2009).

Entretanto, com a aplicação das fibras com dimensões e dosagem corretamente estabelecidas, o processo de concentração de tensões em um ponto não ocorre de forma tão incidente.

Assim, as fibras presentes na área fissurada agem como uma "ponte" para a transferência das tensões de um lado a outro da fissura, como se pode notar na Figura 3. De tal modo, o processo faz com que se haja uma distribuição das tensões e a peça possa resistir de forma eficiente aos esforços solicitantes com velocidade de propagação de fissuras menor (Barros, 2009).

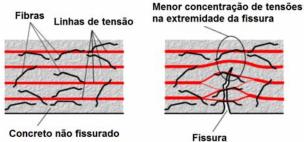


Figura 3 – Concentração de tensões no concreto com fibras (adaptado de BARROS, 2009).

Com o passar do tempo, as tensões começam a atuar nas fibras e para que haja a abertura da fissura, as fibras que estão atuando como ponte deve sofrer ruptura. Tal ruptura e perda de aderência podem ocorrer por alongamento elástico ou plástico da fibra, degradação do concreto na área de contato entre fibra e concreto, arrancamento da fibra e ruptura da fibra (OLIVEIRA, 2005).

Na Figura 4, é mostrado o comportamento das fibras com ganchos quando submetidas a uma força de arrancamento. O gancho atua como um comprimento equivalente adicional de forma que tal mecanismo resiste a uma parcela maior que as fibras sem gancho.

Para fibras retas, a região BF do gráfico expressa a perda de aderência entre concreto e região lateral da fibra. De tal forma, a fibra reta recebe as tensões e começa a ser arrancada até perder totalmente a aderência com a matriz. Porém, para a fibra com gancho, antes de ocorrer a perda da aderência por arrancamento (região DF) passa pelo processo de ter o gancho deformado para a geometria reta. Tal deformação de desdobramento do gancho corresponde à região BC e em tal parte do processo, a fibra consegue resistir a uma quantidade maior de carga (LÖFGREN, 2005).

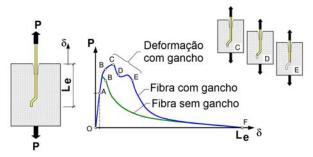


Figura 4 – Comportamento de fibras com gancho e sem gancho quando submetidas ao carregamento de tração P (adaptado de LÖFGREN, 2005).

Propriedades Mecânicas do Concreto Reforçado com Fibras

A adição de fibras no concreto acarreta significativas alterações relacionadas às propriedades mecânicas. Dentre tais propriedades, pode-se citar a resistência à compressão, tração, cisalhamento, flexão, impacto e fadiga, bem como a aumento da dureza do maciço de concreto.

As fibras adicionadas ao concreto não altera as propriedades compressivas da matriz de forma elevada se a dosagem for baixa (<1%). Porém, com elevados índices de fibras na matriz, pode-se elevar a resistência à compressão (LÖFGREN, 2005).

Quanto às propriedades relacionadas à resistência de tensões de tração, LÖFGREN (2005) explicita que a atuação das fibras na prevenção da dispersão de fissuras de maiores dimensões faz com que a peça de concreto se torne mais dúctil. Assim, o concreto resiste melhor às tensões de tração, conferindo uma característica dúctil da matriz.

A flexão é um tipo de esforço recorrente nas estruturas de concreto. Estudos recentes têm comprovado a eficácia da aplicação de fibras na composição do concreto para a melhoria das propriedades resistentes à flexão. Comparando o concreto simples com um concreto com até 2% de fibras, é constatado que a resistência à flexão pode ser elevada a patamares de até 150% de aumento (ACI, 1996).

De acordo com ACI (1996), o comportamento de um membro estrutural composto de concreto e fibras submetido a cargas de impacto pode ter a energia de fratura elevada em um fator de 2.5 se comparado com um concreto simples.

Outra propriedade mecânica do concreto em que melhorias são constatadas com a adição de fibras é a fadiga. A fadiga é caracterizada pela combinação de vários tipos de tensões atuando na estrutura de forma simultânea e com relação ao tempo de aplicação que faz a peça atingir ruptura (RAI e JOSHI, 2014). A adição de fibras faz com que a abertura de fissuras devido à carga advinda dos esforços de fadiga seja diminuída (ACI, 1996).

Com relação à dureza, tem-se que a mesma é caracterizada pela capacidade de absorver energia e de deformar plasticamente sem fraturar. (AL-GHAMDY *et al.*, 1994). De acordo com SUKSAWANG *et al.* (2014), a elevação no índice de dureza do concreto reforçado com fibras depende da dosagem de fibras, do tipo de fibra e das condições de aderência e ancoragem do sistema matriz *versus* fibra.

Na Figura 5, é possível analisar a relação entre carga e deflexão quando o parâmetro é a adição de fibras e resistência do concreto. O concreto

C30 se refere a um concreto de resitência à compressão de 30 MPa enquanto o concreto C80 é referente a um concreto de resistência à compressão de 80 MPa. As siglas FRC30 e FRC80 se referem a concretos de 30 e 80 Mpa de resistência à compressão respectivamente, porém com a adição de fibras. A comparação entre concretos de mesma resistência mostra que se as fibras forem acrescentadas, a peça resiste a cargas de maiores intensidades para uma mesma deflexão.

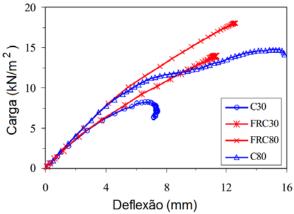


Figura 5 – Gráfico carga *versus* deflexão para concretos C30 e C80 e para concreto reforçados com fibras FRC30 e FRC80 (adaptado de LÖFGREN, 2005).

CONCLUSÃO

Portanto, fissuração é um processo que pode comprometer a durabilidade e a integridade de uma peça de concreto. Uma das alternativas para sanar tal patologia é a adição de fibras na dosagem do concreto. A aplicação de fibras no concreto acarreta melhorias de várias propriedades mecânicas. Um dos problemas que o concreto apresenta é a característica frágil da matriz. A adição de fibras altera tal caráter e a peça de concreto se torna mais dúctil e, portanto, mais segura uma vez que a ruptura de peças dúcteis não ocorre de forma repentina.

REFERÊNCIAS

ACI Committee 544. State-of-the-Art Report on Fiber Reinforced Concrete (ACI 544.1R-82). Concrete International, Vol. 4, No. 5, pp. 9-30, 1996. Disponível em: http://www.forta-ferro.com/pdfs/5441r_96.pdf, acesso em 10 de Maio de 2015.

AL-GHAMDY, D.O.; WIGHT, J.K.; TONS, E. Flexural Toughness of Steel Fiber Reinforced Concrete. JKAU: Eng. Sci., vol. 6, pp. 81-97. Ann Arbor (USA) 1994. Disponível em: http://www.kau.edu.sa/Files/320/Researches/5258 1_22887.pdf, acesso em 6 de Março de 2015.

BARROS, A. R. Avaliação do comportamento do concreto auto-adensável reforçado com fibras de aço. 2009. 178 f. Dissertação (Mestrado em Estruturas) - Universidade Federal de Alagoas, Maceió, 2009. Disponível em: http://www.ctec.ufal.br/posgraduacao/ppgec/disser tacoes_arquivos/Dissertacoes/Alexandre%20Rodri gues%20de%20Barros.pdf, acesso em 3 de junho de 2015.

GÓIS, F. A. P. Avaliação Experimental Do Comportamento De Concreto Fluido Reforçado Com Fibras De Aço: Influência do fator de forma e da fração volumétrica das fibras nas propriedades mecânicas do concreto. Maceió, 2010. Universidade Federal de Alagoas Engenharia Civil (Mestrado em Estruturas). Disponível http://www.ctec.ufal.br/posgraduacao/ppgec/disser tacoes_arquivos/Dissertacoes/Disserta%C3%A7% C3%A3o PPGEC FERNANDA%20GOIS 2010.p df, acesso em 22 de Fevereiro de 2015.

JANSSON, Anette. Fibres in reinforced concrete structures - analysis, experiments and design. Sweden, 2008. Disponível em: http://publications.lib.chalmers.se/records/fulltext/6 8889.pdf, acesso em 20 de Janeiro de 2015.

LÖFGREN, I. Fibre-reinforced Concrete for Industrial Construction. Göteborg: Chalmers University of Technology, 2005. Disponível em: http://www.researchgate.net/publication/25794427 2_Fibre reinforced_Concrete_for_Industrial_Construction_-a fracture mechanics approach to material tes

_a_fracture_mechanics_approach_to_material_tes ting_and_structural_analysis, acesso em 10 de Dezembro de 2014.

OLIVEIRA, S. L. Taxa de armadura longitudinal mínima em vigas de concreto de alta resistência com fibras de aço. Rio de Janeiro, 2005. Dissertação (Mestrado em Engenharia Civil) — Universidade Federal do Rio de Janeiro. Disponível em: http://www.coc.ufrj.br/index.php/component/docma n/cat_view/1-mestrado/87-2005?Itemid=, acesso em 4 de Fevereiro de 2015.

RAI, Amit; JOSHI, Dr. Y.P. Applications and Properties of Fibre Reinforced Concrete. Int. Journal of Engineering Research and Applications,

2014. Disponível em: http://www.academia.edu/7676360/Applications_a nd_Properties_of_Fibre_Reinforced_Concrete, acesso em 15 de maio de 2015. ISSN: 2248-9622, Vol. 4, Issue 5(Version 1).

SARZALEJO, A. G.; Rossi, B.; PERRI, G.; WINTERBERG, R.; ARISTEGUIETA, R. E. P. Fiber as Structural Element for the Reinforcement of Concrete. Technical Manual. Maccaferri. 2010. Disponível em: http://maccaferribalkans.com/al/docs/documents/broshura/fibers.pdf, acesso em 18 de Maio de 2015.

SUKSAWANG, N.; MIRMIRAN, A.; YOHANNES, D. Use of Fiber Reinforced Concrete for Concrete Pavement Slab Replacement. Miami, Florida, 2014. Disponível em: http://www.dot.state.fl.us/research-center/Completed_Proj/Summary_SMO/FDOT-BDK80-977-27-rpt.pdf, acesso em 15 de julho de 2015.