## Il Jornada de Iniciação Científica.

9 E 10 DE NOVEMBRO DE 2017



1

## ANÁLISE IN SILICO DE ANÁLOGOS DE 1,2,3-TRIAZOL CONTRA A LACTATO DESIDROGENASE DE Plasmodium berghei

# Lara de Azevedo Alves<sup>1</sup>, Fernanda Valério Lopes<sup>2</sup>, Clarice Abramo<sup>3</sup>, Adilson David da Silva<sup>4</sup>, Priscila Vanessa Zabala Capriles Goliatt<sup>5</sup>

<sup>1</sup> Graduanda em Farmácia, Universidade Federal de Juiz de Fora, alvesazevedolara@gmail.com

<sup>2</sup> Mestre em Ciências Biológicas, Universidade Federal de Juiz de Fora,
fernandavaleriolopes@hotmail.com

<sup>3</sup> Doutora em Bioquímica e Imunologia, Universidade Federal de Juiz de Fora, clarice.abramo@ufjf.edu.br

**Resumo-** Devido à resistência adquirida pelos parasitas causadores da malária e a ausência de vacinas para tratamentos preventivos, tem-se visto a necessidade da busca de novos compostos para o tratamento desta doença. Neste trabalho, apresentamos os estudos *in silico* da enzima Lactato desidrogenase de *Plasmodium berghei* (*Pb*LDH), organismo modelo para estudos de malária em humanos. Após a reconstrução da estrutura tridimensional homotetramérica da *Pb*LDH, a enzima foi submetida aos estudos de *docking* molecular com os compostos candidatos a inibidores (5, 6, 8 e 9), derivados de 1,2,3-triazol. Os resultados mostraram que os compostos 8 e 9 apresentam maior afinidade de interação com o sítio alvo da *Pb*LDH. Estudos complementares serão realizados afim de explorar melhor a participação dos resíduos de interação no sítio de ligação desses compostos. **Palavras-chave:** Malária; *Plasmodium berghei*; Lactato desidrogenase; Derivados de 1,2,3-triazol;

Área do Conhecimento: Ciências Exatas e da Terra.

### 1 INTRODUÇÃO

Docking Molecular.

As doenças parasitárias constituem um grande problema de Saúde Pública e são consideradas endêmicas em populações de baixa renda. São consideradas Doenças Negligenciadas, uma vez que não despertam o interesse de grandes indústrias farmacêuticas em desenvolver pesquisas para o tratamento e cura das mesmas. Dentre essas doenças, pode-se citar como exemplos a esquistossomose, leishmaniose e malária. No estado de Minas Gerais, essas parasitoses atingem vários municípios comprometendo significativamente a saúde da população, principalmente a rural (Codato et al., 2013; Muguande et al., 2011; Almeida et al., 2015).

A malária pode ser causada por cinco espécies de parasitas do gênero *Plasmodium* que afetam os seres humanos: *P. falciparum*, *P. vivax*, *P. ovale*, *P. malariae* e *P. knowlesi*. Estima-se que o número de casos de malária no mundo tenha sido de aproximadamente 212 milhões, em 2015, sendo a região Africana a mais afetada. Crianças menores de cinco anos de idade e mulheres grávidas são as pessoas mais gravemente afetadas (WHO, 2016). No Brasil, *P. vivax* e *P. falciparum* são os principais causadores da doença, representando respectivamente 84% e 16% dos casos notificados no ano de 2014 (MS-SVS, 2015). Até o século passado, o quinino era o principal quimioterápico utilizado no combate à malária. Seu uso só foi reduzido em função da sua alta toxicidade e dificuldade de obtenção (BUTLER, KHAN e FERGUSON, 2010). Devido ao desenvolvimento de resistência pelo parasita e a falta de vacinas, surgiu a necessidade de se obter novos antimaláricos, como os compostos derivados de 1,2,3-triazol (Lopes et al., 2017) (Figura 1).

A espécie Plasmodium berghei é responsável por infectar roedores e se mostra válida em estudos de rastreamento de drogas com potencial de uso no tratamento de malária humana (PETERS, PORTUS e ROBINSON, 1975).

A enzima Lactato desidrogenase de *Plasmodium berghei* (*Pb*LDH) pode ser considerada um interessante alvo de ação de novos fármacos, pois possui grande diferença estrutural com a enzima

Doutor em Química, Universidade Federal de Juiz de Fora, david.silva@ufjf.edu.br
 Doutora em Modelagem Computacional, Universidade Federal de Juiz de Fora, priscila.capriles@ufjf.edu.br

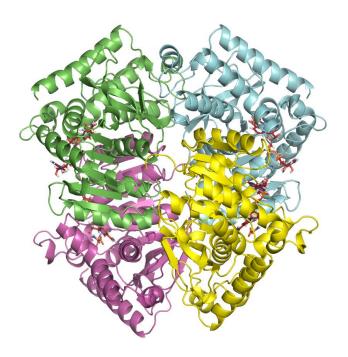
em humanos, demonstrando especificidade de possíveis compostos que possam atuar na *Pb*LDH (Read et al., 2001; Oliveira e França, 2011).

O trabalho teve como objetivo conhecer a estrutura tridimensional da enzima Lactato desidrogenase de *P. berghei* e elaborar estudos de *docking* molecular com os compostos 5, 6, 8 e 9, derivados de 1,2,3-triazol.

Figura 1 - Estrutura e classificação química dos compostos 5, 6, 8 e 9, derivados de 1,2,3-triazol, 1,3,4-trissubstituído.

Fonte Lopes et al., 2017, p.37.

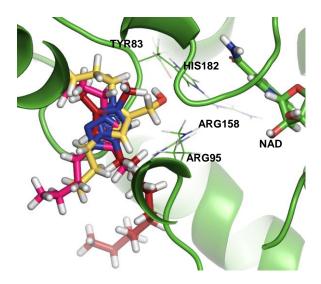
#### 2 METODOLOGIA


O molde para a construção tridimensional (3D) da enzima LDH de *P. berghei* (*Pb*LDH), foi selecionado através do *Protein Data Bank* (PDB) sob o código de 1OC4. A partir do programa PyMOL, versão 1.4.1, foi gerada a conformação 3D da *Pb*LDH, como um homotetrâmero (Figura 2). Esta estrutura foi submetida a estudos de *docking* molecular usando o pacote Schrödinger Maestro 9.3.5, e preparada usando o PrepWizard versão 4.0.518.

A *grid* para os cálculos de energia foi construída usando o programa GLIDE versão 5.8.518. O tamanho da *grid* para a enzima foi de 36 Å (22 Å externo, 14 Å interno) e centrada próxima ao resíduo catalítico, a HIS182 (Shoemark, 2007) e um dos anéis do NAD, ambos localizados no sítio ativo. A grid para a *Pb*LDH foi centrada nas posições X = 23,89, Y = 20,69 e Z = 38,95.

A estrutura dos compostos presentes na Figura 1 foram desenhados no programa ChemSketch versão 11.0 e preparados no campo de força OPLS2005 em pH 7,2  $\pm$  0,2, usando versão 4.0.518 do Ligprep.

Os estudos de *docking* molecular com os respectivos compostos (5,6, 8 e 9) foram realizados utilizando o pacote Schrödinger Maestro 9.3.5. As imagens foram geradas utilizando o programa PyMOL, versão 1.4.1.


Figura 2 - Estrutura tridimensional da enzima LDH de *P. berguei* contendo o substrato oxamato e cofator NAD. Sendo a cadeia A em verde, B em azul, C em rosa e D em amarelo.



#### **3 RESULTADOS E DISCUSSÃO**

Inicialmente foi feito um *docking* com a enzima *Pb*LDH, contendo em seu sítio catalítico o cofator NAD, no entanto os compostos obtiveram uma baixa energia de interação, como mostrado na Figura 3.

Figura 3 - Representação gráfica do *docking* molecular entre a *Pb*LDH, o cofator NAD e os compostos (5), (6), (8) e (9). Figura gerada pelo PyMOL versão 1.4.1.



Devido a esta baixa energia de interação, os *dockings* foram realizados com os compostos 5 e 6 na enzima sem seu cofator, porém os resultados também não foram satisfatórios, uma vez que os compostos apresentaram uma baixa energia de interação com o sítio do NAD. Os resultados de Glide-Score para os compostos 5 e 6 foi igual a -0,805 Kcal/mol e -1,335 Kcal/mol, respectivamente.

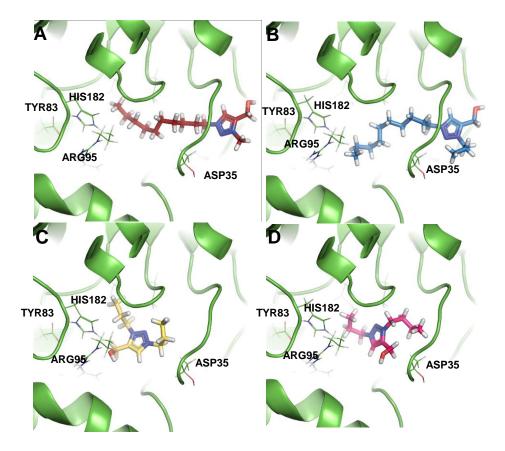

Sendo que ambos os compostos apresentaram ligação de hidrogênio com o resíduo ASP35. Esta baixa afinidade de ligação pode estar relacionada com o comprimento alongado da cadeia lateral dos derivados de triazol selecionados. Por este motivo, foram selecionados os compostos 8 e 9 por possuírem cadeias mais curtas para serem realizados os estudos de *docking* molecular. Os resultados mostraram que os compostos 8 e 9 parecem apresentar maior afinidade de interação. O composto 8 possuiu um valor de Glide-Score igual a -3.561 Kcal/mol e ligação de hidrogênio com os resíduos HIS182 e ARG95. Já o composto 9 apresentou Glide-Score igual a -4.078 Kcal/mol e interação com os resíduos ASN127 e SER234. A Figura 4 e Tabela 1 mostram os valores de energia e interações dos compostos 5, 6, 8 e 9 com a *Pb*LDH.

Tabela 1 – Resultados do *docking* molecular entre a enzima *Pb*LDH e os compostos 5, 6, 8 e 9, utilizando o programa Schrodinger Maestro 9.3.5.

| Compostos | Glide gscore<br>(kcal.mol <sup>-1</sup> ) | Interações          | сКІ (µМ)  |
|-----------|-------------------------------------------|---------------------|-----------|
| 5         | -0,805                                    | LigH:ASP35          | 256914,64 |
| 6         | -1,335                                    | LigH:ASP35          | 105077,29 |
| 8         | -3,561                                    | LigH:HIS182 ARG95   | 2454,62   |
| 9         | -4,078                                    | LigH: ASN127 SER234 | 1024,43   |

Fonte: Autor

Figura 4 - Representação do *docking* molecular entre os compostos e a enzima *Pb*LDH. (A) Composto 5; (B) Composto 6; (C) Composto 8 e (D) Composto 9.



A enzima LDH é de suma importância para a geração de energia e sobrevivência do parasito (GRANCHI et al., 2010), por este motivo a partir dos estudos realizados por Cameron et al. (2004) outros estudos surgiram relacionando a atuação de triazóis e a inibição desta enzima. Uma das hipóteses levantadas é que a inibição realizada por estes compostos deve-se à sua semelhança estrutural com o cofator da enzima, o NADH, podendo levar a uma inibição do tipo competitiva da LDH. Este tipo de inibição não foi possível de se constatar no presente estudo com os derivados de 1,2,3-triazóis.

#### 4 CONCLUSÃO

Com relação a enzima LDH de *P. berghei*, esta parece não ser o melhor alvo para os derivados de 1,2,3-triazóis que mostraram melhor atividade antimalárica no estudo de Lopes *et al.* (2017). No entanto, os derivados merecem ser objeto de futuras investigações contra outros alvos moleculares, principalmente devido à real necessidade por novos medicamentos para o tratamento da malária.

#### **5 REFERÊNCIAS**

Codato, J.C.F., Laguardia, S., Rocha, L.H.L., Kashiwabara, Y.B., Kashiwabara, T.G.B., Rocha, L.L.V. (2013). Perfil Epidemiológico Da Leishmaniose No Leste De Minas Gerais, Brasil. Brazilian Journal of Surgery and Clinical Research, 5(3): 05-10.

Muguande, O.F., Ferraz, M.L., França, E., Gontijo, E.D. (2011). Avaliação da qualidade do Sistema de Vigilância Epidemiológica de Doença de Chagas Aguda em Minas Gerais, 2005-2008. Epidemiologia e Serviços de Saúde, 20(3):317-325.

Almeida, N.C., Jorge, T.A.F., Costa, L.M.R., Santo, L.R.E. (2015). Avaliação das ações de controle da esquistossomose mansônica em município de Minas Gerais. EFDeportes Revista Digital, 19(202).

WHO. World Malaria Report 2016. 2016. Disponível em: http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf. Acesso em 05/08/2017.

MS-SVS. 2015. Boletim Epidemiológico - Malária: Monitoramento dos casos no Brasil em 2014.

BUTLER, A. R.; KHAN, S.; FERGUSON, E. A brief history of malaria chemotherapy. J R Coll Physicians Edinb, v. 40, n. 2, p. 172-7, 2010.

LOPES, F. Avaliação da atividade antimalárica e citotóxica de compostos derivados de 1,2,3-Triazóis em modelo murino. 23/02/17. 74p. Dissertação — Universidade Federal de Juiz de Fora.

PETERS, W.; PORTUS, J. H.; ROBINSON, B. L. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strais of *P. berghei* in screening for blood schizontocidal activity. Annual Tropical Medicine Parasitology, v. 69, n. 2, p. 155-171, 1975.

READ, J. A.; WINTER, V. J.; ESZES, C. M.; SESSIONS, R. B.; BRADY, R. L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins, v. 43, n. 2, p.175-85, 2001.

OLIVEIRA, A. A.; FRANÇA, T. C. C. Lactato desidrogenase como alvo molecular para quimioterapia antimalarial. Revista Militar de Ciência e Tecnologia, n. 28, p. 24-39, 2011.

Deborah K. Shoemark, Matthew J. Cliff, Richard B. Sessions, Anthony R. Clarke. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum.FEBS J. 2007 Jun; 274(11): 2738–2748.

GRANCHI, C.; BERTINI, S.; MACCHIA, M.; MINUTOLO, F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem, v. 17, n. 7, p. 672-97, 2010.

CAMERON, A.; READ, J.; TRANTER, R.; WINTER, V. J.; SESSIONS, R. B.; BRADY, R. L.; VIVAS, L.; EASTON, A.; KENDRICK, H.; CROFT, S. L.; BARROS, D.; LAVANDERA, J. L.; MARTIN, J. J.; RISCO, F.; GARCÍA-OCHOA, S.; GAMO, F. J.; SANZ, L.; LEON, L.; RUIZ, J. R.; GABARRÓ, R.; MALLO, A.; GÓMEZ, H, F. Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. J Biol Chem, v. 279, n. 30, p. 31429-39, 2004.