CASPASE NO PROCESSO DA APOPTOSE
Abstract
A apoptose, também conhecida como suicídio celular, ocorre de forma similar nas mais diversas situações fisiológicas devido a ação em cascata das pró-enzimas caspases. O presente estudo busca elencar o mecanismo de ação das caspases durante o processo de morte celular programada e seu envolvimento em patologias, através de uma revisão sistemática de artigos publicados em revistas científicas indexadas, com busca nas bases de dados por meio dos descritores: “apoptose” e “caspases”. As principais vias da apoptose são: via intrínseca, iniciada por sinais de estresse que são detectados pelas mitocôndrias, liberam citocromo C e outras proteínas, ativa a caspase-9 e depois ativa a caspase-3, levando a apoptose; via extrínseca, receptores de morte, como TNFRI, são estimulados, recrutam proteínas adaptadores, como FADD, associa-se com as caspases -8 ou -10 e geram sinais que e irão se acoplar a via intrínseca, levando a apoptose; granzima B, se liga a membrana da célula, cliva seus substratos através de resíduos de asp, processa BID e as caspases -3 e -7, levando a apoptose. Sendo assim, as caspases possuem papel crucial na manutenção da homeostase do organismo e diante do apresentado, pode-se dizer que a desregulação da ação das caspases pode resultar em severos problemas à saúde humana. Próximos estudos podem averiguar em como seria possível regular a ação dessas enzimas.References
ALBRECHT et al. Activation of Caspase-6 in Aging and Mild Cognitive Impairment. 2007. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829454/> Acesso em: 20 de set. de 2020.
AMARANTE-MENDES, Gustavo P. Apoptose: programa molecular de morte celular. Einstein, v. 1, p. 15-18, 2003.
BERGSBAKEN, T; COOKSON, B. T. 2007. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog, v. 3, p. 161, 2007. Disponível em: <https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.0030161> Acesso em: 20 de set. de 2020.
BOATRIGHT, K. M.; SALVESEN, S. E. Mechanisms of caspase activation. Curr Opin Cell Biol, v.15, p.725-31, 2003. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/14644197/> Acesso em: 20 de set. de 2020.
COWLING, V.; DOWNWARD, J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death e Differentiation. Vol 9. 2002. Disponível em: <http://www.nature.com/cdd/journal/v9/n10/full/4401065a.html> Acesso em: 20 de set. de 2020.
COOKSON, B. T.; BRENDAN, M. A. Pro-inflammatory programmed cell death. Trends Microbioly, v:9, p. 113–114, 2001. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/11303500/> Acesso em: 20 de set. de 2020.
FRANK, B. et al, 2005. Re: Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst v. 97: p. 1012–1013. 2005. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/15601643/> Acesso em: 20 de set. de 2020.
FRANTZ, S. et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol, v.35, p. 685–694, 2003. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/12788386/> Acesso em: 20 de set. de 2020.
GUEGAN. C. et al. Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci, v. 20, p. 553–562, 2002. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/12213439/> Acesso em: 20 de set. de 2020.
GUO. et al. Active Caspase-6 and Caspase-6-Cleaved Tau in Neuropil Threads, Neuritic Plaques, and Neurofibrillary Tangles of Alzheimer’s Disease. 2004. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618555/> Acesso em: 20 de set. de 2020.
HENGARTNER, M. O. The biochemistry of apoptosis. Nature, n. 407, p. 770-776, 2000. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/11048727/> Acesso em: 20 de set. de 2020.
HU, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci, v.107, p. 21635–21640, 2010. Disponível em: < https://pubmed.ncbi.nlm.nih.gov/21118981/> Acesso em: 20 de set. de 2020.
HOPKINS-DONALDSON, S. et al. 2000. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res v. 60: p. 4315–4319. Disponível em: <https://cancerres.aacrjournals.org/content/60/16/4315> Acesso em: 20 de set. de 2020.
JACOBSON, M. D; EVAN, G. I. Apoptosis. Breaking the ICE. Curr Biol., n. 4, p. 337-340, 1994. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/7857398/> Acesso em: 20 de set. de 2020.
KELLY, Jennifer. et al. Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers. v. 19, p. 2847-2858. 2010. Disponível em: <http://cebp.aacrjournals.org/content/19/11/2847.full.pdf+html>. Acesso em: 20 de set. de 2020.
KIM H. S. et al, 2003. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology v. 125: p. 708–715. Disponível em: <https://www.gastrojournal.org/article/S0016-5085(03)01059-X/fulltext >. Acesso em: 20 de set. de 2020.
KISCHKEL, Frank C. et al. Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. 2001. Acesso em: < http://www.jbc.org/content/276/49/46639.abstract?ijkey=54ba5dc61a61a06e60f08b6074a53897cabc061b&keytype2=tf_ipsecsha>. Acesso em: 20 de set. de 2020.
KOLODGIE, F. D. et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol, v.157, p. 1259–1268, 2000. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/11021830/>. Acesso em: 20 de set. de 2020.
LIU, X. H. et al. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab, v.19, p.1099–1108, 1999. Disponível em: <https://journals.sagepub.com/doi/full/10.1097/00004647-199910000-00006>. Acesso em: 20 de set. de 2020.
MACPHERSON, G. et al. 2004. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96: 1866–1869. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/15601643/>. Acesso em: 20 de set. de 2020.
MOLOFSKY, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med, v.203 ,p. 1093–1104, 2006. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1584282/>. Acesso em: 20 de set. de 2020.
NIKOLAEV. et al. APP binds DR6 to cause axon pruning and neuron death via distinct caspases. Nature. 2009. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677572/>. Acesso em: 20 de set. de 2020.
RANGANATH, R.M.; NAGASHREE, N. R. Role of programmed cell death in development. Int Rev Cytol, v.202, p. 159-242, 2001. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/11061565/>. Acesso em: 20 de set. de 2020.
RUPNARAIN, C. et al. Colon cancer: genetics and apoptotic events. Bill Chem, v.385, p.449-64, 2004. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/11061565/>. Acesso em: 20 de set. de 2020.
SHIN, S. et al. "An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7". Biochemistry 40. 1117–23. 2001. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/bi001603q>. Acesso em: 20 de set. de 2020.
SOUNG, Y.H. et al. Mutações inativadoras de caspase-7 gene em cancroshumanos. Oncogene 22: 8048 - 8052. 2003. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/bi0016153q>. Acesso em: 20 de set. de 2020.
SOUNG, Y. H., et al. Somatic mutations of CASP-3 gene in human cancers. Hum Genet 115: 112–115. 2004. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/15127291/>. Acesso em: 20 de set. de 2020.
SOUNG, Y. H. et al, 2005b. Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene v. 24: p. 141–147. 2005. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/15531912/>. Acesso em: 20 de set. de 2020.
STENNICKE, H. R.; SALVESEN, G. S. Properties of the caspases. Biochim Biophys Acta, n. 1387, p. 17-31, 1998. Disponível em: < https://europepmc.org/article/med/9748481>. Acesso em: 20 de set. de 2020.
SPRICK, Martin R. et al. Caspase‐10 is recruited to and activated at the native TRAIL and CD95 deathinducing signalling complexes in a FADD‐dependent manner but can not functionally substitute caspase‐8. 2002. Disponível em: <http://emboj.embopress.org/content/21/17/4520.abstract?ijkey=33050098876fe9a2f65a9f52fba87fe3fc48aeec&keytype2=tf_ipsecsha>. Acesso em: 20 de set. de 2020.
TABACOF, Jacques. Linfoma não-Hodgkin (LNH). Associação Brasileira de linfoma e leucemia. Disponível em: <http://www.abrale.org.br/pagina/linfoma-nao-hodgkin-lnh>. Acesso em: 20 de set. de 2020.
TAYLOR, Rebecca C.; CULLEN, Sean P.; MARTIN, Seamus J. Apoptosis: controlled demolition at the cellular level. Nature reviews Molecular cell biology, v. 9, n. 3, p. 231-241, 2008. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/18073771/>. Acesso em: 20 de set. de 2020.
TEITZ, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6. 529–535. 2000. Disponível em: <https://go.gale.com/ps/anonymous?id=GALE%7CA194208332&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10788956&p=HRCA&sw=w>. Acesso em: 20 de set. de 2020.
THORNBERRY, N. A.; LAZEBNIK, Y. Caspases: enemies within. Science, n. 281, p. 1312- 1316, 1998. Disponível em: < https://pubmed.ncbi.nlm.nih.gov/9721091/>. Acesso em: 20 de set. de 2020.
UNIPROT. Caspase-9. P55211 (CASP9_HUMAN). Disponível em: <http://www.uniprot.org/uniprot/P55211>. Acesso em: 20 de set. de 2020.
UNIPROT. Caspase-10. Q92851 (CASPA_HUMAN). Disponível em: <http://www.uniprot.org/uniprot/Q92851 >. Acesso em: 20 de set. de 2020.
WANG, Jim et al. Caspase-10 is an initiator caspase in death receptor signaling. Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health. 2001. Disponível em: < http://www.pnas.org/content/98/24/13884.full.pdf>. Acesso em: 20 de set. de 2020.
YANG, G. Y. et al. Expression of tumor necrosis factor-α and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-1β converting enzyme deficient mice. J Cereb Blood Flow Metab, v.19, p. 1109–1117, 1999. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/10532635/>. Acesso em: 20 de set. de 2020.
XU, H.L. et al. 2009. Polimorfismos e haplótipos nos caspase-3, caspase-7, e caspase 8-genes e de risco para o câncer endometrial: Um estudo caso-controle de base populacional na população chinesa. Cancer Epidemiol Biomarkers Anterior 18: 2114 – 2122. 2009. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/1055632635/>>. Acesso em: 20 de set. de 2020.
ZHANG, W. H. et al. Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci, v.100, p.16012–16017, 2003. Disponível em: <http://www.uniprot.org/uniprot/Q92857751 >. Acesso em: 20 de set. de 2020.